| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylsyld | Structured version Visualization version GIF version | ||
| Description: A double syllogism inference. (Contributed by Alan Sare, 20-Apr-2011.) |
| Ref | Expression |
|---|---|
| sylsyld.1 | ⊢ (𝜑 → 𝜓) |
| sylsyld.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| sylsyld.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| sylsyld | ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylsyld.2 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 2 | sylsyld.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | sylsyld.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| 5 | 1, 4 | syld 47 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: mpsylsyld 69 syl6an 684 axc16gALT 2495 rspc2vd 3927 trintss 5253 onfununi 8360 smoiun 8380 findcard2 9183 findcard3 9295 findcard3OLD 9296 inficl 9442 en3lplem2 9632 infxpenlem 10032 alephordi 10093 cardaleph 10108 pwsdompw 10222 cfslb2n 10287 isf32lem10 10381 axdc4lem 10474 zorn2lem2 10516 alephreg 10601 inar1 10794 tskuni 10802 grudomon 10836 nqereu 10948 leltletr 11331 ltleletr 11333 elfz0ubfz0 13654 ssnn0fi 14008 caubnd 15382 sqreulem 15383 bezoutlem1 16563 rppwr 16584 pcprendvds 16865 prmreclem3 16943 ptcmpfi 23756 ufilen 23873 fcfnei 23978 bcthlem5 25285 aaliou 26303 wlkres 29655 wlkiswwlks2 29862 3cyclfrgrrn1 30271 n4cyclfrgr 30277 occon2 31274 occon3 31283 atexch 32367 dfufd2lem 33569 sigaclci 34168 fisshasheq 35142 pfxwlk 35151 cusgr3cyclex 35163 idinside 36107 exrecfnlem 37402 poimirlem32 37681 heibor1lem 37838 axc16g-o 38957 axc11-o 38974 aomclem2 43046 frege124d 43752 tratrb 44528 trsspwALT2 44810 |
| Copyright terms: Public domain | W3C validator |