![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylsyld | Structured version Visualization version GIF version |
Description: A double syllogism inference. (Contributed by Alan Sare, 20-Apr-2011.) |
Ref | Expression |
---|---|
sylsyld.1 | ⊢ (𝜑 → 𝜓) |
sylsyld.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
sylsyld.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
sylsyld | ⊢ (𝜑 → (𝜒 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylsyld.2 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
2 | sylsyld.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | sylsyld.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
5 | 1, 4 | syld 47 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: mpsylsyld 69 syl6an 682 axc16gALT 2489 rspc2vd 3943 trintss 5283 onfununi 8337 smoiun 8357 findcard2 9160 findcard2OLD 9280 findcard3 9281 findcard3OLD 9282 inficl 9416 en3lplem2 9604 infxpenlem 10004 alephordi 10065 cardaleph 10080 pwsdompw 10195 cfslb2n 10259 isf32lem10 10353 axdc4lem 10446 zorn2lem2 10488 alephreg 10573 inar1 10766 tskuni 10774 grudomon 10808 nqereu 10920 leltletr 11301 ltleletr 11303 elfz0ubfz0 13601 ssnn0fi 13946 caubnd 15301 sqreulem 15302 bezoutlem1 16477 rppwr 16497 pcprendvds 16769 prmreclem3 16847 ptcmpfi 23308 ufilen 23425 fcfnei 23530 bcthlem5 24836 aaliou 25842 wlkres 28916 wlkiswwlks2 29118 3cyclfrgrrn1 29527 n4cyclfrgr 29533 occon2 30528 occon3 30537 atexch 31621 sigaclci 33118 fisshasheq 34092 pfxwlk 34102 cusgr3cyclex 34115 idinside 35044 exrecfnlem 36248 poimirlem32 36508 heibor1lem 36665 axc16g-o 37792 axc11-o 37809 aomclem2 41782 frege124d 42497 tratrb 43282 trsspwALT2 43565 |
Copyright terms: Public domain | W3C validator |