Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylsyld | Structured version Visualization version GIF version |
Description: A double syllogism inference. (Contributed by Alan Sare, 20-Apr-2011.) |
Ref | Expression |
---|---|
sylsyld.1 | ⊢ (𝜑 → 𝜓) |
sylsyld.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
sylsyld.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
sylsyld | ⊢ (𝜑 → (𝜒 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylsyld.2 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
2 | sylsyld.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | sylsyld.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
5 | 1, 4 | syld 47 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: mpsylsyld 69 syl6an 680 axc16gALT 2494 rspc2vd 3879 trintss 5204 onfununi 8143 smoiun 8163 findcard2 8909 findcard2OLD 8986 findcard3 8987 inficl 9114 en3lplem2 9301 frmin 9438 infxpenlem 9700 alephordi 9761 cardaleph 9776 pwsdompw 9891 cfslb2n 9955 isf32lem10 10049 axdc4lem 10142 zorn2lem2 10184 alephreg 10269 inar1 10462 tskuni 10470 grudomon 10504 nqereu 10616 ltleletr 10998 elfz0ubfz0 13289 ssnn0fi 13633 caubnd 14998 sqreulem 14999 bezoutlem1 16175 rppwr 16197 pcprendvds 16469 prmreclem3 16547 ptcmpfi 22872 ufilen 22989 fcfnei 23094 bcthlem5 24397 aaliou 25403 wlkres 27940 wlkiswwlks2 28141 3cyclfrgrrn1 28550 n4cyclfrgr 28556 occon2 29551 occon3 29560 atexch 30644 sigaclci 32000 fisshasheq 32973 pfxwlk 32985 cusgr3cyclex 32998 idinside 34313 exrecfnlem 35477 poimirlem32 35736 heibor1lem 35894 axc16g-o 36875 axc11-o 36892 aomclem2 40796 frege124d 41258 tratrb 42045 trsspwALT2 42328 leltletr 44673 |
Copyright terms: Public domain | W3C validator |