Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylsyld | Structured version Visualization version GIF version |
Description: A double syllogism inference. (Contributed by Alan Sare, 20-Apr-2011.) |
Ref | Expression |
---|---|
sylsyld.1 | ⊢ (𝜑 → 𝜓) |
sylsyld.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
sylsyld.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
sylsyld | ⊢ (𝜑 → (𝜒 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylsyld.2 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
2 | sylsyld.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | sylsyld.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
5 | 1, 4 | syld 47 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: mpsylsyld 69 syl6an 682 axc16gALT 2493 rspc2vd 3898 trintss 5233 onfununi 8247 smoiun 8267 findcard2 9034 findcard2OLD 9154 findcard3 9155 findcard3OLD 9156 inficl 9287 en3lplem2 9475 infxpenlem 9875 alephordi 9936 cardaleph 9951 pwsdompw 10066 cfslb2n 10130 isf32lem10 10224 axdc4lem 10317 zorn2lem2 10359 alephreg 10444 inar1 10637 tskuni 10645 grudomon 10679 nqereu 10791 leltletr 11172 ltleletr 11174 elfz0ubfz0 13466 ssnn0fi 13811 caubnd 15170 sqreulem 15171 bezoutlem1 16347 rppwr 16367 pcprendvds 16639 prmreclem3 16717 ptcmpfi 23070 ufilen 23187 fcfnei 23292 bcthlem5 24598 aaliou 25604 wlkres 28326 wlkiswwlks2 28528 3cyclfrgrrn1 28937 n4cyclfrgr 28943 occon2 29938 occon3 29947 atexch 31031 sigaclci 32396 fisshasheq 33370 pfxwlk 33382 cusgr3cyclex 33395 idinside 34523 exrecfnlem 35704 poimirlem32 35963 heibor1lem 36121 axc16g-o 37250 axc11-o 37267 aomclem2 41192 frege124d 41740 tratrb 42527 trsspwALT2 42810 |
Copyright terms: Public domain | W3C validator |