Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylsyld | Structured version Visualization version GIF version |
Description: A double syllogism inference. (Contributed by Alan Sare, 20-Apr-2011.) |
Ref | Expression |
---|---|
sylsyld.1 | ⊢ (𝜑 → 𝜓) |
sylsyld.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
sylsyld.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
sylsyld | ⊢ (𝜑 → (𝜒 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylsyld.2 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
2 | sylsyld.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | sylsyld.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
5 | 1, 4 | syld 47 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: mpsylsyld 69 syl6an 681 axc16gALT 2494 rspc2vd 3883 trintss 5208 onfununi 8172 smoiun 8192 findcard2 8947 findcard2OLD 9056 findcard3 9057 inficl 9184 en3lplem2 9371 infxpenlem 9769 alephordi 9830 cardaleph 9845 pwsdompw 9960 cfslb2n 10024 isf32lem10 10118 axdc4lem 10211 zorn2lem2 10253 alephreg 10338 inar1 10531 tskuni 10539 grudomon 10573 nqereu 10685 leltletr 11066 ltleletr 11068 elfz0ubfz0 13360 ssnn0fi 13705 caubnd 15070 sqreulem 15071 bezoutlem1 16247 rppwr 16269 pcprendvds 16541 prmreclem3 16619 ptcmpfi 22964 ufilen 23081 fcfnei 23186 bcthlem5 24492 aaliou 25498 wlkres 28038 wlkiswwlks2 28240 3cyclfrgrrn1 28649 n4cyclfrgr 28655 occon2 29650 occon3 29659 atexch 30743 sigaclci 32100 fisshasheq 33073 pfxwlk 33085 cusgr3cyclex 33098 idinside 34386 exrecfnlem 35550 poimirlem32 35809 heibor1lem 35967 axc16g-o 36948 axc11-o 36965 aomclem2 40880 frege124d 41369 tratrb 42156 trsspwALT2 42439 |
Copyright terms: Public domain | W3C validator |