| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylsyld | Structured version Visualization version GIF version | ||
| Description: A double syllogism inference. (Contributed by Alan Sare, 20-Apr-2011.) |
| Ref | Expression |
|---|---|
| sylsyld.1 | ⊢ (𝜑 → 𝜓) |
| sylsyld.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| sylsyld.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| sylsyld | ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylsyld.2 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 2 | sylsyld.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | sylsyld.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| 5 | 1, 4 | syld 47 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: mpsylsyld 69 syl6an 684 axc16gALT 2488 rspc2vd 3910 trintss 5233 onfununi 8310 smoiun 8330 findcard2 9128 findcard3 9229 findcard3OLD 9230 inficl 9376 en3lplem2 9566 infxpenlem 9966 alephordi 10027 cardaleph 10042 pwsdompw 10156 cfslb2n 10221 isf32lem10 10315 axdc4lem 10408 zorn2lem2 10450 alephreg 10535 inar1 10728 tskuni 10736 grudomon 10770 nqereu 10882 leltletr 11265 ltleletr 11267 elfz0ubfz0 13593 ssnn0fi 13950 caubnd 15325 sqreulem 15326 bezoutlem1 16509 rppwr 16530 pcprendvds 16811 prmreclem3 16889 ptcmpfi 23700 ufilen 23817 fcfnei 23922 bcthlem5 25228 aaliou 26246 wlkres 29598 wlkiswwlks2 29805 3cyclfrgrrn1 30214 n4cyclfrgr 30220 occon2 31217 occon3 31226 atexch 32310 dfufd2lem 33520 sigaclci 34122 fisshasheq 35102 pfxwlk 35111 cusgr3cyclex 35123 idinside 36072 exrecfnlem 37367 poimirlem32 37646 heibor1lem 37803 axc16g-o 38927 axc11-o 38944 aomclem2 43044 frege124d 43750 tratrb 44526 trsspwALT2 44808 |
| Copyright terms: Public domain | W3C validator |