| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylsyld | Structured version Visualization version GIF version | ||
| Description: A double syllogism inference. (Contributed by Alan Sare, 20-Apr-2011.) |
| Ref | Expression |
|---|---|
| sylsyld.1 | ⊢ (𝜑 → 𝜓) |
| sylsyld.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| sylsyld.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| sylsyld | ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylsyld.2 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 2 | sylsyld.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | sylsyld.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| 5 | 1, 4 | syld 47 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: mpsylsyld 69 syl6an 684 axc16gALT 2490 rspc2vd 3898 trintss 5216 onfununi 8261 smoiun 8281 findcard2 9074 findcard3 9167 inficl 9309 en3lplem2 9503 infxpenlem 9904 alephordi 9965 cardaleph 9980 pwsdompw 10094 cfslb2n 10159 isf32lem10 10253 axdc4lem 10346 zorn2lem2 10388 alephreg 10473 inar1 10666 tskuni 10674 grudomon 10708 nqereu 10820 leltletr 11204 ltleletr 11206 elfz0ubfz0 13532 ssnn0fi 13892 caubnd 15266 sqreulem 15267 bezoutlem1 16450 rppwr 16471 pcprendvds 16752 prmreclem3 16830 ptcmpfi 23729 ufilen 23846 fcfnei 23951 bcthlem5 25256 aaliou 26274 wlkres 29648 wlkiswwlks2 29854 3cyclfrgrrn1 30263 n4cyclfrgr 30269 occon2 31266 occon3 31275 atexch 32359 dfufd2lem 33512 sigaclci 34143 fisshasheq 35157 pfxwlk 35166 cusgr3cyclex 35178 idinside 36124 exrecfnlem 37419 poimirlem32 37698 heibor1lem 37855 axc16g-o 38979 axc11-o 38996 aomclem2 43094 frege124d 43800 tratrb 44575 trsspwALT2 44857 |
| Copyright terms: Public domain | W3C validator |