| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylsyld | Structured version Visualization version GIF version | ||
| Description: A double syllogism inference. (Contributed by Alan Sare, 20-Apr-2011.) |
| Ref | Expression |
|---|---|
| sylsyld.1 | ⊢ (𝜑 → 𝜓) |
| sylsyld.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| sylsyld.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| sylsyld | ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylsyld.2 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 2 | sylsyld.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | sylsyld.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| 5 | 1, 4 | syld 47 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: mpsylsyld 69 syl6an 684 axc16gALT 2488 rspc2vd 3907 trintss 5228 onfununi 8287 smoiun 8307 findcard2 9105 findcard3 9205 findcard3OLD 9206 inficl 9352 en3lplem2 9542 infxpenlem 9942 alephordi 10003 cardaleph 10018 pwsdompw 10132 cfslb2n 10197 isf32lem10 10291 axdc4lem 10384 zorn2lem2 10426 alephreg 10511 inar1 10704 tskuni 10712 grudomon 10746 nqereu 10858 leltletr 11241 ltleletr 11243 elfz0ubfz0 13569 ssnn0fi 13926 caubnd 15301 sqreulem 15302 bezoutlem1 16485 rppwr 16506 pcprendvds 16787 prmreclem3 16865 ptcmpfi 23676 ufilen 23793 fcfnei 23898 bcthlem5 25204 aaliou 26222 wlkres 29572 wlkiswwlks2 29778 3cyclfrgrrn1 30187 n4cyclfrgr 30193 occon2 31190 occon3 31199 atexch 32283 dfufd2lem 33493 sigaclci 34095 fisshasheq 35075 pfxwlk 35084 cusgr3cyclex 35096 idinside 36045 exrecfnlem 37340 poimirlem32 37619 heibor1lem 37776 axc16g-o 38900 axc11-o 38917 aomclem2 43017 frege124d 43723 tratrb 44499 trsspwALT2 44781 |
| Copyright terms: Public domain | W3C validator |