| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylsyld | Structured version Visualization version GIF version | ||
| Description: A double syllogism inference. (Contributed by Alan Sare, 20-Apr-2011.) |
| Ref | Expression |
|---|---|
| sylsyld.1 | ⊢ (𝜑 → 𝜓) |
| sylsyld.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| sylsyld.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| sylsyld | ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylsyld.2 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 2 | sylsyld.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | sylsyld.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| 5 | 1, 4 | syld 47 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: mpsylsyld 69 syl6an 684 axc16gALT 2488 rspc2vd 3901 trintss 5220 onfununi 8271 smoiun 8291 findcard2 9088 findcard3 9187 findcard3OLD 9188 inficl 9334 en3lplem2 9528 infxpenlem 9926 alephordi 9987 cardaleph 10002 pwsdompw 10116 cfslb2n 10181 isf32lem10 10275 axdc4lem 10368 zorn2lem2 10410 alephreg 10495 inar1 10688 tskuni 10696 grudomon 10730 nqereu 10842 leltletr 11225 ltleletr 11227 elfz0ubfz0 13553 ssnn0fi 13910 caubnd 15284 sqreulem 15285 bezoutlem1 16468 rppwr 16489 pcprendvds 16770 prmreclem3 16848 ptcmpfi 23716 ufilen 23833 fcfnei 23938 bcthlem5 25244 aaliou 26262 wlkres 29632 wlkiswwlks2 29838 3cyclfrgrrn1 30247 n4cyclfrgr 30253 occon2 31250 occon3 31259 atexch 32343 dfufd2lem 33499 sigaclci 34101 fisshasheq 35090 pfxwlk 35099 cusgr3cyclex 35111 idinside 36060 exrecfnlem 37355 poimirlem32 37634 heibor1lem 37791 axc16g-o 38915 axc11-o 38932 aomclem2 43031 frege124d 43737 tratrb 44513 trsspwALT2 44795 |
| Copyright terms: Public domain | W3C validator |