![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylsyld | Structured version Visualization version GIF version |
Description: A double syllogism inference. (Contributed by Alan Sare, 20-Apr-2011.) |
Ref | Expression |
---|---|
sylsyld.1 | ⊢ (𝜑 → 𝜓) |
sylsyld.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
sylsyld.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
sylsyld | ⊢ (𝜑 → (𝜒 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylsyld.2 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
2 | sylsyld.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | sylsyld.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
5 | 1, 4 | syld 47 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: mpsylsyld 69 syl6an 680 axc16gALT 2483 trintss 5080 onfununi 7830 smoiun 7850 findcard2 8604 findcard3 8607 inficl 8735 en3lplem2 8922 infxpenlem 9285 alephordi 9346 cardaleph 9361 pwsdompw 9472 cfslb2n 9536 isf32lem10 9630 axdc4lem 9723 zorn2lem2 9765 alephreg 9850 inar1 10043 tskuni 10051 grudomon 10085 nqereu 10197 ltleletr 10580 elfz0ubfz0 12861 ssnn0fi 13203 caubnd 14552 sqreulem 14553 bezoutlem1 15716 pcprendvds 16006 prmreclem3 16083 ptcmpfi 22105 ufilen 22222 fcfnei 22327 bcthlem5 23614 aaliou 24610 wlkres 27135 wlkresOLD 27137 wlkiswwlks2 27340 rspc2vd 27736 3cyclfrgrrn1 27756 n4cyclfrgr 27762 occon2 28756 occon3 28765 atexch 29849 sigaclci 31008 fisshasheq 31966 cusgr3cyclex 31991 frmin 32693 idinside 33154 exrecfnlem 34191 poimirlem32 34455 heibor1lem 34619 axc16g-o 35601 axc11-o 35618 aomclem2 39140 frege124d 39591 tratrb 40409 trsspwALT2 40692 leltletr 43009 |
Copyright terms: Public domain | W3C validator |