![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylsyld | Structured version Visualization version GIF version |
Description: A double syllogism inference. (Contributed by Alan Sare, 20-Apr-2011.) |
Ref | Expression |
---|---|
sylsyld.1 | ⊢ (𝜑 → 𝜓) |
sylsyld.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
sylsyld.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
sylsyld | ⊢ (𝜑 → (𝜒 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylsyld.2 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
2 | sylsyld.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | sylsyld.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
5 | 1, 4 | syld 47 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: mpsylsyld 69 syl6an 683 axc16gALT 2498 rspc2vd 3972 trintss 5302 onfununi 8397 smoiun 8417 findcard2 9230 findcard3 9346 findcard3OLD 9347 inficl 9494 en3lplem2 9682 infxpenlem 10082 alephordi 10143 cardaleph 10158 pwsdompw 10272 cfslb2n 10337 isf32lem10 10431 axdc4lem 10524 zorn2lem2 10566 alephreg 10651 inar1 10844 tskuni 10852 grudomon 10886 nqereu 10998 leltletr 11381 ltleletr 11383 elfz0ubfz0 13689 ssnn0fi 14036 caubnd 15407 sqreulem 15408 bezoutlem1 16586 rppwr 16607 pcprendvds 16887 prmreclem3 16965 ptcmpfi 23842 ufilen 23959 fcfnei 24064 bcthlem5 25381 aaliou 26398 wlkres 29706 wlkiswwlks2 29908 3cyclfrgrrn1 30317 n4cyclfrgr 30323 occon2 31320 occon3 31329 atexch 32413 dfufd2lem 33542 sigaclci 34096 fisshasheq 35082 pfxwlk 35091 cusgr3cyclex 35104 idinside 36048 exrecfnlem 37345 poimirlem32 37612 heibor1lem 37769 axc16g-o 38890 axc11-o 38907 aomclem2 43012 frege124d 43723 tratrb 44507 trsspwALT2 44790 |
Copyright terms: Public domain | W3C validator |