![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylsyld | Structured version Visualization version GIF version |
Description: A double syllogism inference. (Contributed by Alan Sare, 20-Apr-2011.) |
Ref | Expression |
---|---|
sylsyld.1 | ⊢ (𝜑 → 𝜓) |
sylsyld.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
sylsyld.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
sylsyld | ⊢ (𝜑 → (𝜒 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylsyld.2 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
2 | sylsyld.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | sylsyld.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
5 | 1, 4 | syld 47 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: mpsylsyld 69 syl6an 683 axc16gALT 2490 rspc2vd 3945 trintss 5285 onfununi 8341 smoiun 8361 findcard2 9164 findcard2OLD 9284 findcard3 9285 findcard3OLD 9286 inficl 9420 en3lplem2 9608 infxpenlem 10008 alephordi 10069 cardaleph 10084 pwsdompw 10199 cfslb2n 10263 isf32lem10 10357 axdc4lem 10450 zorn2lem2 10492 alephreg 10577 inar1 10770 tskuni 10778 grudomon 10812 nqereu 10924 leltletr 11305 ltleletr 11307 elfz0ubfz0 13605 ssnn0fi 13950 caubnd 15305 sqreulem 15306 bezoutlem1 16481 rppwr 16501 pcprendvds 16773 prmreclem3 16851 ptcmpfi 23317 ufilen 23434 fcfnei 23539 bcthlem5 24845 aaliou 25851 wlkres 28958 wlkiswwlks2 29160 3cyclfrgrrn1 29569 n4cyclfrgr 29575 occon2 30572 occon3 30581 atexch 31665 sigaclci 33161 fisshasheq 34135 pfxwlk 34145 cusgr3cyclex 34158 idinside 35087 exrecfnlem 36308 poimirlem32 36568 heibor1lem 36725 axc16g-o 37852 axc11-o 37869 aomclem2 41845 frege124d 42560 tratrb 43345 trsspwALT2 43628 |
Copyright terms: Public domain | W3C validator |