| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylsyld | Structured version Visualization version GIF version | ||
| Description: A double syllogism inference. (Contributed by Alan Sare, 20-Apr-2011.) |
| Ref | Expression |
|---|---|
| sylsyld.1 | ⊢ (𝜑 → 𝜓) |
| sylsyld.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| sylsyld.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| sylsyld | ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylsyld.2 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 2 | sylsyld.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | sylsyld.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| 5 | 1, 4 | syld 47 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: mpsylsyld 69 syl6an 684 axc16gALT 2492 rspc2vd 3894 trintss 5220 onfununi 8270 smoiun 8290 findcard2 9085 findcard3 9178 inficl 9320 en3lplem2 9514 infxpenlem 9915 alephordi 9976 cardaleph 9991 pwsdompw 10105 cfslb2n 10170 isf32lem10 10264 axdc4lem 10357 zorn2lem2 10399 alephreg 10484 inar1 10677 tskuni 10685 grudomon 10719 nqereu 10831 leltletr 11215 ltleletr 11217 elfz0ubfz0 13539 ssnn0fi 13899 caubnd 15273 sqreulem 15274 bezoutlem1 16457 rppwr 16478 pcprendvds 16759 prmreclem3 16837 ptcmpfi 23748 ufilen 23865 fcfnei 23970 bcthlem5 25275 aaliou 26293 wlkres 29668 wlkiswwlks2 29874 3cyclfrgrrn1 30286 n4cyclfrgr 30292 occon2 31289 occon3 31298 atexch 32382 dfufd2lem 33558 sigaclci 34217 fisshasheq 35231 pfxwlk 35240 cusgr3cyclex 35252 idinside 36200 exrecfnlem 37496 poimirlem32 37765 heibor1lem 37922 axc16g-o 39106 axc11-o 39123 aomclem2 43212 frege124d 43918 tratrb 44693 trsspwALT2 44975 |
| Copyright terms: Public domain | W3C validator |