MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.61 Structured version   Visualization version   GIF version

Theorem pm4.61 405
Description: Theorem *4.61 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.61 (¬ (𝜑𝜓) ↔ (𝜑 ∧ ¬ 𝜓))

Proof of Theorem pm4.61
StepHypRef Expression
1 annim 404 . 2 ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑𝜓))
21bicomi 223 1 (¬ (𝜑𝜓) ↔ (𝜑 ∧ ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  pm4.65  406  npss  4045  difin  4195  2nreu  4375  isf32lem2  10110  cat1  17812  nmo  30838  hashxpe  31127  bnj1253  32997  fphpd  40638  clsk1independent  41656  nabctnabc  44426  islindeps  45794
  Copyright terms: Public domain W3C validator