![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm4.61 | Structured version Visualization version GIF version |
Description: Theorem *4.61 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm4.61 | ⊢ (¬ (𝜑 → 𝜓) ↔ (𝜑 ∧ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | annim 405 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 → 𝜓)) | |
2 | 1 | bicomi 223 | 1 ⊢ (¬ (𝜑 → 𝜓) ↔ (𝜑 ∧ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: pm4.65 407 npss 4111 difin 4262 2nreu 4442 isf32lem2 10349 cat1 18047 nmo 31730 hashxpe 32019 bnj1253 34028 fphpd 41554 clsk1independent 42797 nabctnabc 45641 islindeps 47134 |
Copyright terms: Public domain | W3C validator |