MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.61 Structured version   Visualization version   GIF version

Theorem pm4.61 404
Description: Theorem *4.61 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.61 (¬ (𝜑𝜓) ↔ (𝜑 ∧ ¬ 𝜓))

Proof of Theorem pm4.61
StepHypRef Expression
1 annim 403 . 2 ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑𝜓))
21bicomi 224 1 (¬ (𝜑𝜓) ↔ (𝜑 ∧ ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  pm4.65  405  npss  4123  difin  4278  2nreu  4450  isf32lem2  10392  cat1  18151  nmo  32518  hashxpe  32817  bnj1253  35010  fphpd  42804  clsk1independent  44036  nabctnabc  46881  islindeps  48299
  Copyright terms: Public domain W3C validator