MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.61 Structured version   Visualization version   GIF version

Theorem pm4.61 408
Description: Theorem *4.61 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.61 (¬ (𝜑𝜓) ↔ (𝜑 ∧ ¬ 𝜓))

Proof of Theorem pm4.61
StepHypRef Expression
1 annim 407 . 2 ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑𝜓))
21bicomi 227 1 (¬ (𝜑𝜓) ↔ (𝜑 ∧ ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400
This theorem is referenced by:  pm4.65  409  npss  4011  difin  4162  2nreu  4341  isf32lem2  9867  cat1  17482  nmo  30425  hashxpe  30715  bnj1253  32581  fphpd  40251  clsk1independent  41243  nabctnabc  44006  islindeps  45376
  Copyright terms: Public domain W3C validator