Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nanor | Structured version Visualization version GIF version |
Description: Alternative denial in terms of disjunction and negation. This explains the name "alternative denial". (Contributed by BJ, 19-Oct-2022.) |
Ref | Expression |
---|---|
nanor | ⊢ ((𝜑 ⊼ 𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nan 1484 | . 2 ⊢ ((𝜑 ⊼ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | |
2 | ianor 978 | . 2 ⊢ (¬ (𝜑 ∧ 𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓)) | |
3 | 1, 2 | bitri 274 | 1 ⊢ ((𝜑 ⊼ 𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 ∨ wo 843 ⊼ wnan 1483 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-nan 1484 |
This theorem is referenced by: elnanelprv 33291 wl-df3maxtru1 35590 |
Copyright terms: Public domain | W3C validator |