MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nanor Structured version   Visualization version   GIF version

Theorem nanor 1495
Description: Alternative denial in terms of disjunction and negation. This explains the name "alternative denial". (Contributed by BJ, 19-Oct-2022.)
Assertion
Ref Expression
nanor ((𝜑𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓))

Proof of Theorem nanor
StepHypRef Expression
1 df-nan 1492 . 2 ((𝜑𝜓) ↔ ¬ (𝜑𝜓))
2 ianor 984 . 2 (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓))
31, 2bitri 275 1 ((𝜑𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 848  wnan 1491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-nan 1492
This theorem is referenced by:  elnanelprv  35434  wl-df3maxtru1  37493
  Copyright terms: Public domain W3C validator