MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nanor Structured version   Visualization version   GIF version

Theorem nanor 1490
Description: Alternative denial in terms of disjunction and negation. This explains the name "alternative denial". (Contributed by BJ, 19-Oct-2022.)
Assertion
Ref Expression
nanor ((𝜑𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓))

Proof of Theorem nanor
StepHypRef Expression
1 df-nan 1487 . 2 ((𝜑𝜓) ↔ ¬ (𝜑𝜓))
2 ianor 979 . 2 (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓))
31, 2bitri 274 1 ((𝜑𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  wo 844  wnan 1486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-nan 1487
This theorem is referenced by:  elnanelprv  33391  wl-df3maxtru1  35663
  Copyright terms: Public domain W3C validator