|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nanor | Structured version Visualization version GIF version | ||
| Description: Alternative denial in terms of disjunction and negation. This explains the name "alternative denial". (Contributed by BJ, 19-Oct-2022.) | 
| Ref | Expression | 
|---|---|
| nanor | ⊢ ((𝜑 ⊼ 𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-nan 1492 | . 2 ⊢ ((𝜑 ⊼ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | |
| 2 | ianor 984 | . 2 ⊢ (¬ (𝜑 ∧ 𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ ((𝜑 ⊼ 𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 848 ⊼ wnan 1491 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-nan 1492 | 
| This theorem is referenced by: elnanelprv 35434 wl-df3maxtru1 37493 | 
| Copyright terms: Public domain | W3C validator |