| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elnanelprv | Structured version Visualization version GIF version | ||
| Description: The wff (𝐴 ∈ 𝐵 ⊼ 𝐵 ∈ 𝐴) encoded as ((𝐴∈𝑔𝐵) ⊼𝑔(𝐵∈𝑔𝐴)) is true in any model 𝑀. This is the model theoretic proof of elnanel 9626. (Contributed by AV, 5-Nov-2023.) |
| Ref | Expression |
|---|---|
| elnanelprv | ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝑀⊧((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝑀 ∈ 𝑉) | |
| 2 | 3simpc 1150 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) | |
| 3 | pm3.22 459 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ∈ ω ∧ 𝐴 ∈ ω)) | |
| 4 | 3 | 3adant1 1130 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ∈ ω ∧ 𝐴 ∈ ω)) |
| 5 | eqid 2736 | . . . . 5 ⊢ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴)) = ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴)) | |
| 6 | 5 | satefvfmla1 35452 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ ω ∧ 𝐴 ∈ ω)) → (𝑀 Sat∈ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬ (𝑎‘𝐴) ∈ (𝑎‘𝐵) ∨ ¬ (𝑎‘𝐵) ∈ (𝑎‘𝐴))}) |
| 7 | 1, 2, 4, 6 | syl3anc 1373 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑀 Sat∈ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬ (𝑎‘𝐴) ∈ (𝑎‘𝐵) ∨ ¬ (𝑎‘𝐵) ∈ (𝑎‘𝐴))}) |
| 8 | elnanel 9626 | . . . . . 6 ⊢ ((𝑎‘𝐴) ∈ (𝑎‘𝐵) ⊼ (𝑎‘𝐵) ∈ (𝑎‘𝐴)) | |
| 9 | nanor 1495 | . . . . . 6 ⊢ (((𝑎‘𝐴) ∈ (𝑎‘𝐵) ⊼ (𝑎‘𝐵) ∈ (𝑎‘𝐴)) ↔ (¬ (𝑎‘𝐴) ∈ (𝑎‘𝐵) ∨ ¬ (𝑎‘𝐵) ∈ (𝑎‘𝐴))) | |
| 10 | 8, 9 | mpbi 230 | . . . . 5 ⊢ (¬ (𝑎‘𝐴) ∈ (𝑎‘𝐵) ∨ ¬ (𝑎‘𝐵) ∈ (𝑎‘𝐴)) |
| 11 | 10 | a1i 11 | . . . 4 ⊢ (𝑎 ∈ (𝑀 ↑m ω) → (¬ (𝑎‘𝐴) ∈ (𝑎‘𝐵) ∨ ¬ (𝑎‘𝐵) ∈ (𝑎‘𝐴))) |
| 12 | 11 | rabeqc 3433 | . . 3 ⊢ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬ (𝑎‘𝐴) ∈ (𝑎‘𝐵) ∨ ¬ (𝑎‘𝐵) ∈ (𝑎‘𝐴))} = (𝑀 ↑m ω) |
| 13 | 7, 12 | eqtrdi 2787 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑀 Sat∈ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) = (𝑀 ↑m ω)) |
| 14 | ovex 7443 | . . 3 ⊢ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴)) ∈ V | |
| 15 | prv 35455 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴)) ∈ V) → (𝑀⊧((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴)) ↔ (𝑀 Sat∈ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) = (𝑀 ↑m ω))) | |
| 16 | 1, 14, 15 | sylancl 586 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑀⊧((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴)) ↔ (𝑀 Sat∈ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) = (𝑀 ↑m ω))) |
| 17 | 13, 16 | mpbird 257 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝑀⊧((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 ⊼ wnan 1491 = wceq 1540 ∈ wcel 2109 {crab 3420 Vcvv 3464 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 ωcom 7866 ↑m cmap 8845 ∈𝑔cgoe 35360 ⊼𝑔cgna 35361 Sat∈ csate 35365 ⊧cprv 35366 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-reg 9611 ax-inf2 9660 ax-ac2 10482 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-nan 1492 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9958 df-ac 10135 df-goel 35367 df-gona 35368 df-goal 35369 df-sat 35370 df-sate 35371 df-fmla 35372 df-prv 35373 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |