Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elnanelprv Structured version   Visualization version   GIF version

Theorem elnanelprv 35423
Description: The wff (𝐴𝐵𝐵𝐴) encoded as ((𝐴𝑔𝐵) 𝑔(𝐵𝑔𝐴)) is true in any model 𝑀. This is the model theoretic proof of elnanel 9567. (Contributed by AV, 5-Nov-2023.)
Assertion
Ref Expression
elnanelprv ((𝑀𝑉𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝑀⊧((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴)))

Proof of Theorem elnanelprv
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝑀𝑉𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝑀𝑉)
2 3simpc 1150 . . . 4 ((𝑀𝑉𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ ω ∧ 𝐵 ∈ ω))
3 pm3.22 459 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ∈ ω ∧ 𝐴 ∈ ω))
433adant1 1130 . . . 4 ((𝑀𝑉𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ∈ ω ∧ 𝐴 ∈ ω))
5 eqid 2730 . . . . 5 ((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴)) = ((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴))
65satefvfmla1 35419 . . . 4 ((𝑀𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ ω ∧ 𝐴 ∈ ω)) → (𝑀 Sat ((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴))) = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐴) ∈ (𝑎𝐵) ∨ ¬ (𝑎𝐵) ∈ (𝑎𝐴))})
71, 2, 4, 6syl3anc 1373 . . 3 ((𝑀𝑉𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑀 Sat ((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴))) = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐴) ∈ (𝑎𝐵) ∨ ¬ (𝑎𝐵) ∈ (𝑎𝐴))})
8 elnanel 9567 . . . . . 6 ((𝑎𝐴) ∈ (𝑎𝐵) ⊼ (𝑎𝐵) ∈ (𝑎𝐴))
9 nanor 1495 . . . . . 6 (((𝑎𝐴) ∈ (𝑎𝐵) ⊼ (𝑎𝐵) ∈ (𝑎𝐴)) ↔ (¬ (𝑎𝐴) ∈ (𝑎𝐵) ∨ ¬ (𝑎𝐵) ∈ (𝑎𝐴)))
108, 9mpbi 230 . . . . 5 (¬ (𝑎𝐴) ∈ (𝑎𝐵) ∨ ¬ (𝑎𝐵) ∈ (𝑎𝐴))
1110a1i 11 . . . 4 (𝑎 ∈ (𝑀m ω) → (¬ (𝑎𝐴) ∈ (𝑎𝐵) ∨ ¬ (𝑎𝐵) ∈ (𝑎𝐴)))
1211rabeqc 3421 . . 3 {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐴) ∈ (𝑎𝐵) ∨ ¬ (𝑎𝐵) ∈ (𝑎𝐴))} = (𝑀m ω)
137, 12eqtrdi 2781 . 2 ((𝑀𝑉𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑀 Sat ((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴))) = (𝑀m ω))
14 ovex 7423 . . 3 ((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴)) ∈ V
15 prv 35422 . . 3 ((𝑀𝑉 ∧ ((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴)) ∈ V) → (𝑀⊧((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴)) ↔ (𝑀 Sat ((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴))) = (𝑀m ω)))
161, 14, 15sylancl 586 . 2 ((𝑀𝑉𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑀⊧((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴)) ↔ (𝑀 Sat ((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴))) = (𝑀m ω)))
1713, 16mpbird 257 1 ((𝑀𝑉𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝑀⊧((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086  wnan 1491   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450   class class class wbr 5110  cfv 6514  (class class class)co 7390  ωcom 7845  m cmap 8802  𝑔cgoe 35327  𝑔cgna 35328   Sat csate 35332  cprv 35333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-reg 9552  ax-inf2 9601  ax-ac2 10423
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-nan 1492  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-ac 10076  df-goel 35334  df-gona 35335  df-goal 35336  df-sat 35337  df-sate 35338  df-fmla 35339  df-prv 35340
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator