Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elnanelprv Structured version   Visualization version   GIF version

Theorem elnanelprv 33104
Description: The wff (𝐴𝐵𝐵𝐴) encoded as ((𝐴𝑔𝐵) 𝑔(𝐵𝑔𝐴)) is true in any model 𝑀. This is the model theoretic proof of elnanel 9222. (Contributed by AV, 5-Nov-2023.)
Assertion
Ref Expression
elnanelprv ((𝑀𝑉𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝑀⊧((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴)))

Proof of Theorem elnanelprv
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simp1 1138 . . . 4 ((𝑀𝑉𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝑀𝑉)
2 3simpc 1152 . . . 4 ((𝑀𝑉𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ ω ∧ 𝐵 ∈ ω))
3 pm3.22 463 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ∈ ω ∧ 𝐴 ∈ ω))
433adant1 1132 . . . 4 ((𝑀𝑉𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ∈ ω ∧ 𝐴 ∈ ω))
5 eqid 2737 . . . . 5 ((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴)) = ((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴))
65satefvfmla1 33100 . . . 4 ((𝑀𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ ω ∧ 𝐴 ∈ ω)) → (𝑀 Sat ((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴))) = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐴) ∈ (𝑎𝐵) ∨ ¬ (𝑎𝐵) ∈ (𝑎𝐴))})
71, 2, 4, 6syl3anc 1373 . . 3 ((𝑀𝑉𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑀 Sat ((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴))) = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐴) ∈ (𝑎𝐵) ∨ ¬ (𝑎𝐵) ∈ (𝑎𝐴))})
8 elnanel 9222 . . . . . 6 ((𝑎𝐴) ∈ (𝑎𝐵) ⊼ (𝑎𝐵) ∈ (𝑎𝐴))
9 nanor 1491 . . . . . 6 (((𝑎𝐴) ∈ (𝑎𝐵) ⊼ (𝑎𝐵) ∈ (𝑎𝐴)) ↔ (¬ (𝑎𝐴) ∈ (𝑎𝐵) ∨ ¬ (𝑎𝐵) ∈ (𝑎𝐴)))
108, 9mpbi 233 . . . . 5 (¬ (𝑎𝐴) ∈ (𝑎𝐵) ∨ ¬ (𝑎𝐵) ∈ (𝑎𝐴))
1110a1i 11 . . . 4 (𝑎 ∈ (𝑀m ω) → (¬ (𝑎𝐴) ∈ (𝑎𝐵) ∨ ¬ (𝑎𝐵) ∈ (𝑎𝐴)))
1211rabeqc 3600 . . 3 {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐴) ∈ (𝑎𝐵) ∨ ¬ (𝑎𝐵) ∈ (𝑎𝐴))} = (𝑀m ω)
137, 12eqtrdi 2794 . 2 ((𝑀𝑉𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑀 Sat ((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴))) = (𝑀m ω))
14 ovex 7246 . . 3 ((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴)) ∈ V
15 prv 33103 . . 3 ((𝑀𝑉 ∧ ((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴)) ∈ V) → (𝑀⊧((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴)) ↔ (𝑀 Sat ((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴))) = (𝑀m ω)))
161, 14, 15sylancl 589 . 2 ((𝑀𝑉𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑀⊧((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴)) ↔ (𝑀 Sat ((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴))) = (𝑀m ω)))
1713, 16mpbird 260 1 ((𝑀𝑉𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝑀⊧((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847  w3a 1089  wnan 1487   = wceq 1543  wcel 2110  {crab 3065  Vcvv 3408   class class class wbr 5053  cfv 6380  (class class class)co 7213  ωcom 7644  m cmap 8508  𝑔cgoe 33008  𝑔cgna 33009   Sat csate 33013  cprv 33014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-reg 9208  ax-inf2 9256  ax-ac2 10077
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-ifp 1064  df-3or 1090  df-3an 1091  df-nan 1488  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-card 9555  df-ac 9730  df-goel 33015  df-gona 33016  df-goal 33017  df-sat 33018  df-sate 33019  df-fmla 33020  df-prv 33021
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator