| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elnanelprv | Structured version Visualization version GIF version | ||
| Description: The wff (𝐴 ∈ 𝐵 ⊼ 𝐵 ∈ 𝐴) encoded as ((𝐴∈𝑔𝐵) ⊼𝑔(𝐵∈𝑔𝐴)) is true in any model 𝑀. This is the model theoretic proof of elnanel 9567. (Contributed by AV, 5-Nov-2023.) |
| Ref | Expression |
|---|---|
| elnanelprv | ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝑀⊧((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝑀 ∈ 𝑉) | |
| 2 | 3simpc 1150 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) | |
| 3 | pm3.22 459 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ∈ ω ∧ 𝐴 ∈ ω)) | |
| 4 | 3 | 3adant1 1130 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ∈ ω ∧ 𝐴 ∈ ω)) |
| 5 | eqid 2730 | . . . . 5 ⊢ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴)) = ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴)) | |
| 6 | 5 | satefvfmla1 35419 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ ω ∧ 𝐴 ∈ ω)) → (𝑀 Sat∈ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬ (𝑎‘𝐴) ∈ (𝑎‘𝐵) ∨ ¬ (𝑎‘𝐵) ∈ (𝑎‘𝐴))}) |
| 7 | 1, 2, 4, 6 | syl3anc 1373 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑀 Sat∈ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬ (𝑎‘𝐴) ∈ (𝑎‘𝐵) ∨ ¬ (𝑎‘𝐵) ∈ (𝑎‘𝐴))}) |
| 8 | elnanel 9567 | . . . . . 6 ⊢ ((𝑎‘𝐴) ∈ (𝑎‘𝐵) ⊼ (𝑎‘𝐵) ∈ (𝑎‘𝐴)) | |
| 9 | nanor 1495 | . . . . . 6 ⊢ (((𝑎‘𝐴) ∈ (𝑎‘𝐵) ⊼ (𝑎‘𝐵) ∈ (𝑎‘𝐴)) ↔ (¬ (𝑎‘𝐴) ∈ (𝑎‘𝐵) ∨ ¬ (𝑎‘𝐵) ∈ (𝑎‘𝐴))) | |
| 10 | 8, 9 | mpbi 230 | . . . . 5 ⊢ (¬ (𝑎‘𝐴) ∈ (𝑎‘𝐵) ∨ ¬ (𝑎‘𝐵) ∈ (𝑎‘𝐴)) |
| 11 | 10 | a1i 11 | . . . 4 ⊢ (𝑎 ∈ (𝑀 ↑m ω) → (¬ (𝑎‘𝐴) ∈ (𝑎‘𝐵) ∨ ¬ (𝑎‘𝐵) ∈ (𝑎‘𝐴))) |
| 12 | 11 | rabeqc 3421 | . . 3 ⊢ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬ (𝑎‘𝐴) ∈ (𝑎‘𝐵) ∨ ¬ (𝑎‘𝐵) ∈ (𝑎‘𝐴))} = (𝑀 ↑m ω) |
| 13 | 7, 12 | eqtrdi 2781 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑀 Sat∈ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) = (𝑀 ↑m ω)) |
| 14 | ovex 7423 | . . 3 ⊢ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴)) ∈ V | |
| 15 | prv 35422 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴)) ∈ V) → (𝑀⊧((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴)) ↔ (𝑀 Sat∈ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) = (𝑀 ↑m ω))) | |
| 16 | 1, 14, 15 | sylancl 586 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑀⊧((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴)) ↔ (𝑀 Sat∈ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) = (𝑀 ↑m ω))) |
| 17 | 13, 16 | mpbird 257 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝑀⊧((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 ⊼ wnan 1491 = wceq 1540 ∈ wcel 2109 {crab 3408 Vcvv 3450 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 ωcom 7845 ↑m cmap 8802 ∈𝑔cgoe 35327 ⊼𝑔cgna 35328 Sat∈ csate 35332 ⊧cprv 35333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-reg 9552 ax-inf2 9601 ax-ac2 10423 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-nan 1492 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-ac 10076 df-goel 35334 df-gona 35335 df-goal 35336 df-sat 35337 df-sate 35338 df-fmla 35339 df-prv 35340 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |