Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elnanelprv Structured version   Visualization version   GIF version

Theorem elnanelprv 35397
Description: The wff (𝐴𝐵𝐵𝐴) encoded as ((𝐴𝑔𝐵) 𝑔(𝐵𝑔𝐴)) is true in any model 𝑀. This is the model theoretic proof of elnanel 9676. (Contributed by AV, 5-Nov-2023.)
Assertion
Ref Expression
elnanelprv ((𝑀𝑉𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝑀⊧((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴)))

Proof of Theorem elnanelprv
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝑀𝑉𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝑀𝑉)
2 3simpc 1150 . . . 4 ((𝑀𝑉𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ ω ∧ 𝐵 ∈ ω))
3 pm3.22 459 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ∈ ω ∧ 𝐴 ∈ ω))
433adant1 1130 . . . 4 ((𝑀𝑉𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ∈ ω ∧ 𝐴 ∈ ω))
5 eqid 2740 . . . . 5 ((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴)) = ((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴))
65satefvfmla1 35393 . . . 4 ((𝑀𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ ω ∧ 𝐴 ∈ ω)) → (𝑀 Sat ((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴))) = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐴) ∈ (𝑎𝐵) ∨ ¬ (𝑎𝐵) ∈ (𝑎𝐴))})
71, 2, 4, 6syl3anc 1371 . . 3 ((𝑀𝑉𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑀 Sat ((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴))) = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐴) ∈ (𝑎𝐵) ∨ ¬ (𝑎𝐵) ∈ (𝑎𝐴))})
8 elnanel 9676 . . . . . 6 ((𝑎𝐴) ∈ (𝑎𝐵) ⊼ (𝑎𝐵) ∈ (𝑎𝐴))
9 nanor 1492 . . . . . 6 (((𝑎𝐴) ∈ (𝑎𝐵) ⊼ (𝑎𝐵) ∈ (𝑎𝐴)) ↔ (¬ (𝑎𝐴) ∈ (𝑎𝐵) ∨ ¬ (𝑎𝐵) ∈ (𝑎𝐴)))
108, 9mpbi 230 . . . . 5 (¬ (𝑎𝐴) ∈ (𝑎𝐵) ∨ ¬ (𝑎𝐵) ∈ (𝑎𝐴))
1110a1i 11 . . . 4 (𝑎 ∈ (𝑀m ω) → (¬ (𝑎𝐴) ∈ (𝑎𝐵) ∨ ¬ (𝑎𝐵) ∈ (𝑎𝐴)))
1211rabeqc 3456 . . 3 {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐴) ∈ (𝑎𝐵) ∨ ¬ (𝑎𝐵) ∈ (𝑎𝐴))} = (𝑀m ω)
137, 12eqtrdi 2796 . 2 ((𝑀𝑉𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑀 Sat ((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴))) = (𝑀m ω))
14 ovex 7481 . . 3 ((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴)) ∈ V
15 prv 35396 . . 3 ((𝑀𝑉 ∧ ((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴)) ∈ V) → (𝑀⊧((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴)) ↔ (𝑀 Sat ((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴))) = (𝑀m ω)))
161, 14, 15sylancl 585 . 2 ((𝑀𝑉𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑀⊧((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴)) ↔ (𝑀 Sat ((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴))) = (𝑀m ω)))
1713, 16mpbird 257 1 ((𝑀𝑉𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝑀⊧((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087  wnan 1488   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488   class class class wbr 5166  cfv 6573  (class class class)co 7448  ωcom 7903  m cmap 8884  𝑔cgoe 35301  𝑔cgna 35302   Sat csate 35306  cprv 35307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-reg 9661  ax-inf2 9710  ax-ac2 10532
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064  df-3or 1088  df-3an 1089  df-nan 1489  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-ac 10185  df-goel 35308  df-gona 35309  df-goal 35310  df-sat 35311  df-sate 35312  df-fmla 35313  df-prv 35314
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator