| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elnanelprv | Structured version Visualization version GIF version | ||
| Description: The wff (𝐴 ∈ 𝐵 ⊼ 𝐵 ∈ 𝐴) encoded as ((𝐴∈𝑔𝐵) ⊼𝑔(𝐵∈𝑔𝐴)) is true in any model 𝑀. This is the model theoretic proof of elnanel 9629. (Contributed by AV, 5-Nov-2023.) |
| Ref | Expression |
|---|---|
| elnanelprv | ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝑀⊧((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝑀 ∈ 𝑉) | |
| 2 | 3simpc 1150 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) | |
| 3 | pm3.22 459 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ∈ ω ∧ 𝐴 ∈ ω)) | |
| 4 | 3 | 3adant1 1130 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ∈ ω ∧ 𝐴 ∈ ω)) |
| 5 | eqid 2734 | . . . . 5 ⊢ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴)) = ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴)) | |
| 6 | 5 | satefvfmla1 35389 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ ω ∧ 𝐴 ∈ ω)) → (𝑀 Sat∈ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬ (𝑎‘𝐴) ∈ (𝑎‘𝐵) ∨ ¬ (𝑎‘𝐵) ∈ (𝑎‘𝐴))}) |
| 7 | 1, 2, 4, 6 | syl3anc 1372 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑀 Sat∈ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬ (𝑎‘𝐴) ∈ (𝑎‘𝐵) ∨ ¬ (𝑎‘𝐵) ∈ (𝑎‘𝐴))}) |
| 8 | elnanel 9629 | . . . . . 6 ⊢ ((𝑎‘𝐴) ∈ (𝑎‘𝐵) ⊼ (𝑎‘𝐵) ∈ (𝑎‘𝐴)) | |
| 9 | nanor 1494 | . . . . . 6 ⊢ (((𝑎‘𝐴) ∈ (𝑎‘𝐵) ⊼ (𝑎‘𝐵) ∈ (𝑎‘𝐴)) ↔ (¬ (𝑎‘𝐴) ∈ (𝑎‘𝐵) ∨ ¬ (𝑎‘𝐵) ∈ (𝑎‘𝐴))) | |
| 10 | 8, 9 | mpbi 230 | . . . . 5 ⊢ (¬ (𝑎‘𝐴) ∈ (𝑎‘𝐵) ∨ ¬ (𝑎‘𝐵) ∈ (𝑎‘𝐴)) |
| 11 | 10 | a1i 11 | . . . 4 ⊢ (𝑎 ∈ (𝑀 ↑m ω) → (¬ (𝑎‘𝐴) ∈ (𝑎‘𝐵) ∨ ¬ (𝑎‘𝐵) ∈ (𝑎‘𝐴))) |
| 12 | 11 | rabeqc 3432 | . . 3 ⊢ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬ (𝑎‘𝐴) ∈ (𝑎‘𝐵) ∨ ¬ (𝑎‘𝐵) ∈ (𝑎‘𝐴))} = (𝑀 ↑m ω) |
| 13 | 7, 12 | eqtrdi 2785 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑀 Sat∈ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) = (𝑀 ↑m ω)) |
| 14 | ovex 7446 | . . 3 ⊢ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴)) ∈ V | |
| 15 | prv 35392 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴)) ∈ V) → (𝑀⊧((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴)) ↔ (𝑀 Sat∈ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) = (𝑀 ↑m ω))) | |
| 16 | 1, 14, 15 | sylancl 586 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑀⊧((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴)) ↔ (𝑀 Sat∈ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) = (𝑀 ↑m ω))) |
| 17 | 13, 16 | mpbird 257 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝑀⊧((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 ⊼ wnan 1490 = wceq 1539 ∈ wcel 2107 {crab 3419 Vcvv 3463 class class class wbr 5123 ‘cfv 6541 (class class class)co 7413 ωcom 7869 ↑m cmap 8848 ∈𝑔cgoe 35297 ⊼𝑔cgna 35298 Sat∈ csate 35302 ⊧cprv 35303 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-reg 9614 ax-inf2 9663 ax-ac2 10485 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-nan 1491 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-card 9961 df-ac 10138 df-goel 35304 df-gona 35305 df-goal 35306 df-sat 35307 df-sate 35308 df-fmla 35309 df-prv 35310 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |