Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elnanelprv Structured version   Visualization version   GIF version

Theorem elnanelprv 35414
Description: The wff (𝐴𝐵𝐵𝐴) encoded as ((𝐴𝑔𝐵) 𝑔(𝐵𝑔𝐴)) is true in any model 𝑀. This is the model theoretic proof of elnanel 9645. (Contributed by AV, 5-Nov-2023.)
Assertion
Ref Expression
elnanelprv ((𝑀𝑉𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝑀⊧((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴)))

Proof of Theorem elnanelprv
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simp1 1135 . . . 4 ((𝑀𝑉𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝑀𝑉)
2 3simpc 1149 . . . 4 ((𝑀𝑉𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ ω ∧ 𝐵 ∈ ω))
3 pm3.22 459 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ∈ ω ∧ 𝐴 ∈ ω))
433adant1 1129 . . . 4 ((𝑀𝑉𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ∈ ω ∧ 𝐴 ∈ ω))
5 eqid 2735 . . . . 5 ((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴)) = ((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴))
65satefvfmla1 35410 . . . 4 ((𝑀𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ ω ∧ 𝐴 ∈ ω)) → (𝑀 Sat ((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴))) = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐴) ∈ (𝑎𝐵) ∨ ¬ (𝑎𝐵) ∈ (𝑎𝐴))})
71, 2, 4, 6syl3anc 1370 . . 3 ((𝑀𝑉𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑀 Sat ((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴))) = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐴) ∈ (𝑎𝐵) ∨ ¬ (𝑎𝐵) ∈ (𝑎𝐴))})
8 elnanel 9645 . . . . . 6 ((𝑎𝐴) ∈ (𝑎𝐵) ⊼ (𝑎𝐵) ∈ (𝑎𝐴))
9 nanor 1492 . . . . . 6 (((𝑎𝐴) ∈ (𝑎𝐵) ⊼ (𝑎𝐵) ∈ (𝑎𝐴)) ↔ (¬ (𝑎𝐴) ∈ (𝑎𝐵) ∨ ¬ (𝑎𝐵) ∈ (𝑎𝐴)))
108, 9mpbi 230 . . . . 5 (¬ (𝑎𝐴) ∈ (𝑎𝐵) ∨ ¬ (𝑎𝐵) ∈ (𝑎𝐴))
1110a1i 11 . . . 4 (𝑎 ∈ (𝑀m ω) → (¬ (𝑎𝐴) ∈ (𝑎𝐵) ∨ ¬ (𝑎𝐵) ∈ (𝑎𝐴)))
1211rabeqc 3446 . . 3 {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐴) ∈ (𝑎𝐵) ∨ ¬ (𝑎𝐵) ∈ (𝑎𝐴))} = (𝑀m ω)
137, 12eqtrdi 2791 . 2 ((𝑀𝑉𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑀 Sat ((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴))) = (𝑀m ω))
14 ovex 7464 . . 3 ((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴)) ∈ V
15 prv 35413 . . 3 ((𝑀𝑉 ∧ ((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴)) ∈ V) → (𝑀⊧((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴)) ↔ (𝑀 Sat ((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴))) = (𝑀m ω)))
161, 14, 15sylancl 586 . 2 ((𝑀𝑉𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑀⊧((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴)) ↔ (𝑀 Sat ((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴))) = (𝑀m ω)))
1713, 16mpbird 257 1 ((𝑀𝑉𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝑀⊧((𝐴𝑔𝐵)⊼𝑔(𝐵𝑔𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086  wnan 1488   = wceq 1537  wcel 2106  {crab 3433  Vcvv 3478   class class class wbr 5148  cfv 6563  (class class class)co 7431  ωcom 7887  m cmap 8865  𝑔cgoe 35318  𝑔cgna 35319   Sat csate 35323  cprv 35324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-reg 9630  ax-inf2 9679  ax-ac2 10501
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-nan 1489  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-ac 10154  df-goel 35325  df-gona 35326  df-goal 35327  df-sat 35328  df-sate 35329  df-fmla 35330  df-prv 35331
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator