| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elnanelprv | Structured version Visualization version GIF version | ||
| Description: The wff (𝐴 ∈ 𝐵 ⊼ 𝐵 ∈ 𝐴) encoded as ((𝐴∈𝑔𝐵) ⊼𝑔(𝐵∈𝑔𝐴)) is true in any model 𝑀. This is the model theoretic proof of elnanel 9497. (Contributed by AV, 5-Nov-2023.) |
| Ref | Expression |
|---|---|
| elnanelprv | ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝑀⊧((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝑀 ∈ 𝑉) | |
| 2 | 3simpc 1150 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) | |
| 3 | pm3.22 459 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ∈ ω ∧ 𝐴 ∈ ω)) | |
| 4 | 3 | 3adant1 1130 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ∈ ω ∧ 𝐴 ∈ ω)) |
| 5 | eqid 2731 | . . . . 5 ⊢ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴)) = ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴)) | |
| 6 | 5 | satefvfmla1 35469 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ ω ∧ 𝐴 ∈ ω)) → (𝑀 Sat∈ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬ (𝑎‘𝐴) ∈ (𝑎‘𝐵) ∨ ¬ (𝑎‘𝐵) ∈ (𝑎‘𝐴))}) |
| 7 | 1, 2, 4, 6 | syl3anc 1373 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑀 Sat∈ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬ (𝑎‘𝐴) ∈ (𝑎‘𝐵) ∨ ¬ (𝑎‘𝐵) ∈ (𝑎‘𝐴))}) |
| 8 | elnanel 9497 | . . . . . 6 ⊢ ((𝑎‘𝐴) ∈ (𝑎‘𝐵) ⊼ (𝑎‘𝐵) ∈ (𝑎‘𝐴)) | |
| 9 | nanor 1496 | . . . . . 6 ⊢ (((𝑎‘𝐴) ∈ (𝑎‘𝐵) ⊼ (𝑎‘𝐵) ∈ (𝑎‘𝐴)) ↔ (¬ (𝑎‘𝐴) ∈ (𝑎‘𝐵) ∨ ¬ (𝑎‘𝐵) ∈ (𝑎‘𝐴))) | |
| 10 | 8, 9 | mpbi 230 | . . . . 5 ⊢ (¬ (𝑎‘𝐴) ∈ (𝑎‘𝐵) ∨ ¬ (𝑎‘𝐵) ∈ (𝑎‘𝐴)) |
| 11 | 10 | a1i 11 | . . . 4 ⊢ (𝑎 ∈ (𝑀 ↑m ω) → (¬ (𝑎‘𝐴) ∈ (𝑎‘𝐵) ∨ ¬ (𝑎‘𝐵) ∈ (𝑎‘𝐴))) |
| 12 | 11 | rabeqc 3407 | . . 3 ⊢ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬ (𝑎‘𝐴) ∈ (𝑎‘𝐵) ∨ ¬ (𝑎‘𝐵) ∈ (𝑎‘𝐴))} = (𝑀 ↑m ω) |
| 13 | 7, 12 | eqtrdi 2782 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑀 Sat∈ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) = (𝑀 ↑m ω)) |
| 14 | ovex 7379 | . . 3 ⊢ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴)) ∈ V | |
| 15 | prv 35472 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴)) ∈ V) → (𝑀⊧((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴)) ↔ (𝑀 Sat∈ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) = (𝑀 ↑m ω))) | |
| 16 | 1, 14, 15 | sylancl 586 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑀⊧((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴)) ↔ (𝑀 Sat∈ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) = (𝑀 ↑m ω))) |
| 17 | 13, 16 | mpbird 257 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝑀⊧((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 ⊼ wnan 1492 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 ωcom 7796 ↑m cmap 8750 ∈𝑔cgoe 35377 ⊼𝑔cgna 35378 Sat∈ csate 35382 ⊧cprv 35383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-reg 9478 ax-inf2 9531 ax-ac2 10354 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-nan 1493 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-ac 10007 df-goel 35384 df-gona 35385 df-goal 35386 df-sat 35387 df-sate 35388 df-fmla 35389 df-prv 35390 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |