Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elnanelprv | Structured version Visualization version GIF version |
Description: The wff (𝐴 ∈ 𝐵 ⊼ 𝐵 ∈ 𝐴) encoded as ((𝐴∈𝑔𝐵) ⊼𝑔(𝐵∈𝑔𝐴)) is true in any model 𝑀. This is the model theoretic proof of elnanel 9222. (Contributed by AV, 5-Nov-2023.) |
Ref | Expression |
---|---|
elnanelprv | ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝑀⊧((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1138 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝑀 ∈ 𝑉) | |
2 | 3simpc 1152 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) | |
3 | pm3.22 463 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ∈ ω ∧ 𝐴 ∈ ω)) | |
4 | 3 | 3adant1 1132 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ∈ ω ∧ 𝐴 ∈ ω)) |
5 | eqid 2737 | . . . . 5 ⊢ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴)) = ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴)) | |
6 | 5 | satefvfmla1 33100 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ ω ∧ 𝐴 ∈ ω)) → (𝑀 Sat∈ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬ (𝑎‘𝐴) ∈ (𝑎‘𝐵) ∨ ¬ (𝑎‘𝐵) ∈ (𝑎‘𝐴))}) |
7 | 1, 2, 4, 6 | syl3anc 1373 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑀 Sat∈ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬ (𝑎‘𝐴) ∈ (𝑎‘𝐵) ∨ ¬ (𝑎‘𝐵) ∈ (𝑎‘𝐴))}) |
8 | elnanel 9222 | . . . . . 6 ⊢ ((𝑎‘𝐴) ∈ (𝑎‘𝐵) ⊼ (𝑎‘𝐵) ∈ (𝑎‘𝐴)) | |
9 | nanor 1491 | . . . . . 6 ⊢ (((𝑎‘𝐴) ∈ (𝑎‘𝐵) ⊼ (𝑎‘𝐵) ∈ (𝑎‘𝐴)) ↔ (¬ (𝑎‘𝐴) ∈ (𝑎‘𝐵) ∨ ¬ (𝑎‘𝐵) ∈ (𝑎‘𝐴))) | |
10 | 8, 9 | mpbi 233 | . . . . 5 ⊢ (¬ (𝑎‘𝐴) ∈ (𝑎‘𝐵) ∨ ¬ (𝑎‘𝐵) ∈ (𝑎‘𝐴)) |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝑎 ∈ (𝑀 ↑m ω) → (¬ (𝑎‘𝐴) ∈ (𝑎‘𝐵) ∨ ¬ (𝑎‘𝐵) ∈ (𝑎‘𝐴))) |
12 | 11 | rabeqc 3600 | . . 3 ⊢ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬ (𝑎‘𝐴) ∈ (𝑎‘𝐵) ∨ ¬ (𝑎‘𝐵) ∈ (𝑎‘𝐴))} = (𝑀 ↑m ω) |
13 | 7, 12 | eqtrdi 2794 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑀 Sat∈ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) = (𝑀 ↑m ω)) |
14 | ovex 7246 | . . 3 ⊢ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴)) ∈ V | |
15 | prv 33103 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴)) ∈ V) → (𝑀⊧((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴)) ↔ (𝑀 Sat∈ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) = (𝑀 ↑m ω))) | |
16 | 1, 14, 15 | sylancl 589 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑀⊧((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴)) ↔ (𝑀 Sat∈ ((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) = (𝑀 ↑m ω))) |
17 | 13, 16 | mpbird 260 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝑀⊧((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∨ wo 847 ∧ w3a 1089 ⊼ wnan 1487 = wceq 1543 ∈ wcel 2110 {crab 3065 Vcvv 3408 class class class wbr 5053 ‘cfv 6380 (class class class)co 7213 ωcom 7644 ↑m cmap 8508 ∈𝑔cgoe 33008 ⊼𝑔cgna 33009 Sat∈ csate 33013 ⊧cprv 33014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-reg 9208 ax-inf2 9256 ax-ac2 10077 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-ifp 1064 df-3or 1090 df-3an 1091 df-nan 1488 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-2o 8203 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-card 9555 df-ac 9730 df-goel 33015 df-gona 33016 df-goal 33017 df-sat 33018 df-sate 33019 df-fmla 33020 df-prv 33021 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |