Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-df3maxtru1 | Structured version Visualization version GIF version |
Description: Assuming
"(n+1)-maxtru1" ↔ ¬
"(n+1)-mintru-2", we can deduce from
the recursion formula given in wl-df-3mintru2 35753, that a similiar one
"(n+1)-maxtru1" ↔ if-(𝜑,-. "n-mintru-1" , "n-maxtru1" ) is valid for expressing 'at most one input is true'. This can also be rephrased as a mutual exclusivity of propositional expressions (no two of a sequence of inputs can simultaniously be true). Of course, this suggests that all inputs depend on variables 𝜂, 𝜁... Whatever wellformed expression we plugin for these variables, it will render at most one of the inputs true. The here introduced mutual exclusivity is possibly useful for case studies, where we want the cases be sort of 'disjoint'. One can further imagine that a complete case scenario demands that the 'at most' is sharpened to 'exactly one'. This does not impose any difficulty here, as one of the inputs will then be the negation of all others be or'ed. As one input is determined, 'at most one' is sufficient to describe the general form here. Since cadd is an alias for 'at least 2 out of three are true', its negation is under focus here. (Contributed by Wolf Lammen, 23-Jun-2024.) |
Ref | Expression |
---|---|
wl-df3maxtru1 | ⊢ (¬ cadd(𝜑, 𝜓, 𝜒) ↔ if-(𝜑, (𝜓 ⊽ 𝜒), (𝜓 ⊼ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cadnot 1615 | . 2 ⊢ (¬ cadd(𝜑, 𝜓, 𝜒) ↔ cadd(¬ 𝜑, ¬ 𝜓, ¬ 𝜒)) | |
2 | wl-df-3mintru2 35753 | . 2 ⊢ (cadd(¬ 𝜑, ¬ 𝜓, ¬ 𝜒) ↔ if-(¬ 𝜑, (¬ 𝜓 ∨ ¬ 𝜒), (¬ 𝜓 ∧ ¬ 𝜒))) | |
3 | ifpn 1071 | . . 3 ⊢ (if-(𝜑, (𝜓 ⊽ 𝜒), (𝜓 ⊼ 𝜒)) ↔ if-(¬ 𝜑, (𝜓 ⊼ 𝜒), (𝜓 ⊽ 𝜒))) | |
4 | nanor 1492 | . . . . . 6 ⊢ ((𝜓 ⊼ 𝜒) ↔ (¬ 𝜓 ∨ ¬ 𝜒)) | |
5 | 4 | a1i 11 | . . . . 5 ⊢ (⊤ → ((𝜓 ⊼ 𝜒) ↔ (¬ 𝜓 ∨ ¬ 𝜒))) |
6 | df-nor 1528 | . . . . . . 7 ⊢ ((𝜓 ⊽ 𝜒) ↔ ¬ (𝜓 ∨ 𝜒)) | |
7 | ioran 981 | . . . . . . 7 ⊢ (¬ (𝜓 ∨ 𝜒) ↔ (¬ 𝜓 ∧ ¬ 𝜒)) | |
8 | 6, 7 | bitri 274 | . . . . . 6 ⊢ ((𝜓 ⊽ 𝜒) ↔ (¬ 𝜓 ∧ ¬ 𝜒)) |
9 | 8 | a1i 11 | . . . . 5 ⊢ (⊤ → ((𝜓 ⊽ 𝜒) ↔ (¬ 𝜓 ∧ ¬ 𝜒))) |
10 | 5, 9 | ifpbi23d 1079 | . . . 4 ⊢ (⊤ → (if-(¬ 𝜑, (𝜓 ⊼ 𝜒), (𝜓 ⊽ 𝜒)) ↔ if-(¬ 𝜑, (¬ 𝜓 ∨ ¬ 𝜒), (¬ 𝜓 ∧ ¬ 𝜒)))) |
11 | 10 | mptru 1547 | . . 3 ⊢ (if-(¬ 𝜑, (𝜓 ⊼ 𝜒), (𝜓 ⊽ 𝜒)) ↔ if-(¬ 𝜑, (¬ 𝜓 ∨ ¬ 𝜒), (¬ 𝜓 ∧ ¬ 𝜒))) |
12 | 3, 11 | bitr2i 275 | . 2 ⊢ (if-(¬ 𝜑, (¬ 𝜓 ∨ ¬ 𝜒), (¬ 𝜓 ∧ ¬ 𝜒)) ↔ if-(𝜑, (𝜓 ⊽ 𝜒), (𝜓 ⊼ 𝜒))) |
13 | 1, 2, 12 | 3bitri 296 | 1 ⊢ (¬ cadd(𝜑, 𝜓, 𝜒) ↔ if-(𝜑, (𝜓 ⊽ 𝜒), (𝜓 ⊼ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 ∨ wo 844 if-wif 1060 ⊼ wnan 1488 ⊽ wnor 1527 ⊤wtru 1541 caddwcad 1606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-nan 1489 df-xor 1509 df-nor 1528 df-tru 1543 df-cad 1607 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |