Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-df3maxtru1 Structured version   Visualization version   GIF version

Theorem wl-df3maxtru1 35590
Description: Assuming "(n+1)-maxtru1" ↔ ¬ "(n+1)-mintru-2", we can deduce from the recursion formula given in wl-df-3mintru2 35582, that a similiar one

"(n+1)-maxtru1" ↔ if-(𝜑,-. "n-mintru-1" , "n-maxtru1" )

is valid for expressing 'at most one input is true'. This can also be rephrased as a mutual exclusivity of propositional expressions (no two of a sequence of inputs can simultaniously be true). Of course, this suggests that all inputs depend on variables 𝜂, 𝜁... Whatever wellformed expression we plugin for these variables, it will render at most one of the inputs true.

The here introduced mutual exclusivity is possibly useful for case studies, where we want the cases be sort of 'disjoint'. One can further imagine that a complete case scenario demands that the 'at most' is sharpened to 'exactly one'. This does not impose any difficulty here, as one of the inputs will then be the negation of all others be or'ed. As one input is determined, 'at most one' is sufficient to describe the general form here.

Since cadd is an alias for 'at least 2 out of three are true', its negation is under focus here. (Contributed by Wolf Lammen, 23-Jun-2024.)

Assertion
Ref Expression
wl-df3maxtru1 (¬ cadd(𝜑, 𝜓, 𝜒) ↔ if-(𝜑, (𝜓 𝜒), (𝜓𝜒)))

Proof of Theorem wl-df3maxtru1
StepHypRef Expression
1 cadnot 1618 . 2 (¬ cadd(𝜑, 𝜓, 𝜒) ↔ cadd(¬ 𝜑, ¬ 𝜓, ¬ 𝜒))
2 wl-df-3mintru2 35582 . 2 (cadd(¬ 𝜑, ¬ 𝜓, ¬ 𝜒) ↔ if-(¬ 𝜑, (¬ 𝜓 ∨ ¬ 𝜒), (¬ 𝜓 ∧ ¬ 𝜒)))
3 ifpn 1070 . . 3 (if-(𝜑, (𝜓 𝜒), (𝜓𝜒)) ↔ if-(¬ 𝜑, (𝜓𝜒), (𝜓 𝜒)))
4 nanor 1487 . . . . . 6 ((𝜓𝜒) ↔ (¬ 𝜓 ∨ ¬ 𝜒))
54a1i 11 . . . . 5 (⊤ → ((𝜓𝜒) ↔ (¬ 𝜓 ∨ ¬ 𝜒)))
6 df-nor 1523 . . . . . . 7 ((𝜓 𝜒) ↔ ¬ (𝜓𝜒))
7 ioran 980 . . . . . . 7 (¬ (𝜓𝜒) ↔ (¬ 𝜓 ∧ ¬ 𝜒))
86, 7bitri 274 . . . . . 6 ((𝜓 𝜒) ↔ (¬ 𝜓 ∧ ¬ 𝜒))
98a1i 11 . . . . 5 (⊤ → ((𝜓 𝜒) ↔ (¬ 𝜓 ∧ ¬ 𝜒)))
105, 9ifpbi23d 1078 . . . 4 (⊤ → (if-(¬ 𝜑, (𝜓𝜒), (𝜓 𝜒)) ↔ if-(¬ 𝜑, (¬ 𝜓 ∨ ¬ 𝜒), (¬ 𝜓 ∧ ¬ 𝜒))))
1110mptru 1546 . . 3 (if-(¬ 𝜑, (𝜓𝜒), (𝜓 𝜒)) ↔ if-(¬ 𝜑, (¬ 𝜓 ∨ ¬ 𝜒), (¬ 𝜓 ∧ ¬ 𝜒)))
123, 11bitr2i 275 . 2 (if-(¬ 𝜑, (¬ 𝜓 ∨ ¬ 𝜒), (¬ 𝜓 ∧ ¬ 𝜒)) ↔ if-(𝜑, (𝜓 𝜒), (𝜓𝜒)))
131, 2, 123bitri 296 1 (¬ cadd(𝜑, 𝜓, 𝜒) ↔ if-(𝜑, (𝜓 𝜒), (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395  wo 843  if-wif 1059  wnan 1483   wnor 1522  wtru 1540  caddwcad 1609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-3or 1086  df-3an 1087  df-nan 1484  df-xor 1504  df-nor 1523  df-tru 1542  df-cad 1610
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator