Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-df3maxtru1 Structured version   Visualization version   GIF version

Theorem wl-df3maxtru1 37024
Description: Assuming "(n+1)-maxtru1" ↔ ¬ "(n+1)-mintru-2", we can deduce from the recursion formula given in wl-df-3mintru2 37016, that a similiar one

"(n+1)-maxtru1" ↔ if-(𝜑,-. "n-mintru-1" , "n-maxtru1" )

is valid for expressing 'at most one input is true'. This can also be rephrased as a mutual exclusivity of propositional expressions (no two of a sequence of inputs can simultaniously be true). Of course, this suggests that all inputs depend on variables 𝜂, 𝜁... Whatever wellformed expression we plugin for these variables, it will render at most one of the inputs true.

The here introduced mutual exclusivity is possibly useful for case studies, where we want the cases be sort of 'disjoint'. One can further imagine that a complete case scenario demands that the 'at most' is sharpened to 'exactly one'. This does not impose any difficulty here, as one of the inputs will then be the negation of all others be or'ed. As one input is determined, 'at most one' is sufficient to describe the general form here.

Since cadd is an alias for 'at least 2 out of three are true', its negation is under focus here. (Contributed by Wolf Lammen, 23-Jun-2024.)

Assertion
Ref Expression
wl-df3maxtru1 (¬ cadd(𝜑, 𝜓, 𝜒) ↔ if-(𝜑, (𝜓 𝜒), (𝜓𝜒)))

Proof of Theorem wl-df3maxtru1
StepHypRef Expression
1 cadnot 1608 . 2 (¬ cadd(𝜑, 𝜓, 𝜒) ↔ cadd(¬ 𝜑, ¬ 𝜓, ¬ 𝜒))
2 wl-df-3mintru2 37016 . 2 (cadd(¬ 𝜑, ¬ 𝜓, ¬ 𝜒) ↔ if-(¬ 𝜑, (¬ 𝜓 ∨ ¬ 𝜒), (¬ 𝜓 ∧ ¬ 𝜒)))
3 ifpn 1071 . . 3 (if-(𝜑, (𝜓 𝜒), (𝜓𝜒)) ↔ if-(¬ 𝜑, (𝜓𝜒), (𝜓 𝜒)))
4 nanor 1488 . . . . . 6 ((𝜓𝜒) ↔ (¬ 𝜓 ∨ ¬ 𝜒))
54a1i 11 . . . . 5 (⊤ → ((𝜓𝜒) ↔ (¬ 𝜓 ∨ ¬ 𝜒)))
6 df-nor 1522 . . . . . . 7 ((𝜓 𝜒) ↔ ¬ (𝜓𝜒))
7 ioran 981 . . . . . . 7 (¬ (𝜓𝜒) ↔ (¬ 𝜓 ∧ ¬ 𝜒))
86, 7bitri 274 . . . . . 6 ((𝜓 𝜒) ↔ (¬ 𝜓 ∧ ¬ 𝜒))
98a1i 11 . . . . 5 (⊤ → ((𝜓 𝜒) ↔ (¬ 𝜓 ∧ ¬ 𝜒)))
105, 9ifpbi23d 1077 . . . 4 (⊤ → (if-(¬ 𝜑, (𝜓𝜒), (𝜓 𝜒)) ↔ if-(¬ 𝜑, (¬ 𝜓 ∨ ¬ 𝜒), (¬ 𝜓 ∧ ¬ 𝜒))))
1110mptru 1540 . . 3 (if-(¬ 𝜑, (𝜓𝜒), (𝜓 𝜒)) ↔ if-(¬ 𝜑, (¬ 𝜓 ∨ ¬ 𝜒), (¬ 𝜓 ∧ ¬ 𝜒)))
123, 11bitr2i 275 . 2 (if-(¬ 𝜑, (¬ 𝜓 ∨ ¬ 𝜒), (¬ 𝜓 ∧ ¬ 𝜒)) ↔ if-(𝜑, (𝜓 𝜒), (𝜓𝜒)))
131, 2, 123bitri 296 1 (¬ cadd(𝜑, 𝜓, 𝜒) ↔ if-(𝜑, (𝜓 𝜒), (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 394  wo 845  if-wif 1060  wnan 1484   wnor 1521  wtru 1534  caddwcad 1599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ifp 1061  df-3or 1085  df-3an 1086  df-nan 1485  df-xor 1505  df-nor 1522  df-tru 1536  df-cad 1600
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator