Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-df3maxtru1 | Structured version Visualization version GIF version |
Description: Assuming
"(n+1)-maxtru1" ↔ ¬
"(n+1)-mintru-2", we can deduce from
the recursion formula given in wl-df-3mintru2 35683, that a similiar one
"(n+1)-maxtru1" ↔ if-(𝜑,-. "n-mintru-1" , "n-maxtru1" ) is valid for expressing 'at most one input is true'. This can also be rephrased as a mutual exclusivity of propositional expressions (no two of a sequence of inputs can simultaniously be true). Of course, this suggests that all inputs depend on variables 𝜂, 𝜁... Whatever wellformed expression we plugin for these variables, it will render at most one of the inputs true. The here introduced mutual exclusivity is possibly useful for case studies, where we want the cases be sort of 'disjoint'. One can further imagine that a complete case scenario demands that the 'at most' is sharpened to 'exactly one'. This does not impose any difficulty here, as one of the inputs will then be the negation of all others be or'ed. As one input is determined, 'at most one' is sufficient to describe the general form here. Since cadd is an alias for 'at least 2 out of three are true', its negation is under focus here. (Contributed by Wolf Lammen, 23-Jun-2024.) |
Ref | Expression |
---|---|
wl-df3maxtru1 | ⊢ (¬ cadd(𝜑, 𝜓, 𝜒) ↔ if-(𝜑, (𝜓 ⊽ 𝜒), (𝜓 ⊼ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cadnot 1612 | . 2 ⊢ (¬ cadd(𝜑, 𝜓, 𝜒) ↔ cadd(¬ 𝜑, ¬ 𝜓, ¬ 𝜒)) | |
2 | wl-df-3mintru2 35683 | . 2 ⊢ (cadd(¬ 𝜑, ¬ 𝜓, ¬ 𝜒) ↔ if-(¬ 𝜑, (¬ 𝜓 ∨ ¬ 𝜒), (¬ 𝜓 ∧ ¬ 𝜒))) | |
3 | ifpn 1070 | . . 3 ⊢ (if-(𝜑, (𝜓 ⊽ 𝜒), (𝜓 ⊼ 𝜒)) ↔ if-(¬ 𝜑, (𝜓 ⊼ 𝜒), (𝜓 ⊽ 𝜒))) | |
4 | nanor 1489 | . . . . . 6 ⊢ ((𝜓 ⊼ 𝜒) ↔ (¬ 𝜓 ∨ ¬ 𝜒)) | |
5 | 4 | a1i 11 | . . . . 5 ⊢ (⊤ → ((𝜓 ⊼ 𝜒) ↔ (¬ 𝜓 ∨ ¬ 𝜒))) |
6 | df-nor 1525 | . . . . . . 7 ⊢ ((𝜓 ⊽ 𝜒) ↔ ¬ (𝜓 ∨ 𝜒)) | |
7 | ioran 980 | . . . . . . 7 ⊢ (¬ (𝜓 ∨ 𝜒) ↔ (¬ 𝜓 ∧ ¬ 𝜒)) | |
8 | 6, 7 | bitri 274 | . . . . . 6 ⊢ ((𝜓 ⊽ 𝜒) ↔ (¬ 𝜓 ∧ ¬ 𝜒)) |
9 | 8 | a1i 11 | . . . . 5 ⊢ (⊤ → ((𝜓 ⊽ 𝜒) ↔ (¬ 𝜓 ∧ ¬ 𝜒))) |
10 | 5, 9 | ifpbi23d 1078 | . . . 4 ⊢ (⊤ → (if-(¬ 𝜑, (𝜓 ⊼ 𝜒), (𝜓 ⊽ 𝜒)) ↔ if-(¬ 𝜑, (¬ 𝜓 ∨ ¬ 𝜒), (¬ 𝜓 ∧ ¬ 𝜒)))) |
11 | 10 | mptru 1544 | . . 3 ⊢ (if-(¬ 𝜑, (𝜓 ⊼ 𝜒), (𝜓 ⊽ 𝜒)) ↔ if-(¬ 𝜑, (¬ 𝜓 ∨ ¬ 𝜒), (¬ 𝜓 ∧ ¬ 𝜒))) |
12 | 3, 11 | bitr2i 275 | . 2 ⊢ (if-(¬ 𝜑, (¬ 𝜓 ∨ ¬ 𝜒), (¬ 𝜓 ∧ ¬ 𝜒)) ↔ if-(𝜑, (𝜓 ⊽ 𝜒), (𝜓 ⊼ 𝜒))) |
13 | 1, 2, 12 | 3bitri 296 | 1 ⊢ (¬ cadd(𝜑, 𝜓, 𝜒) ↔ if-(𝜑, (𝜓 ⊽ 𝜒), (𝜓 ⊼ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 ∨ wo 843 if-wif 1059 ⊼ wnan 1485 ⊽ wnor 1524 ⊤wtru 1538 caddwcad 1603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 df-3or 1086 df-3an 1087 df-nan 1486 df-xor 1506 df-nor 1525 df-tru 1540 df-cad 1604 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |