| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nbi2 | Structured version Visualization version GIF version | ||
| Description: Two ways to express "exclusive or". (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 24-Jan-2013.) |
| Ref | Expression |
|---|---|
| nbi2 | ⊢ (¬ (𝜑 ↔ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xor3 382 | . 2 ⊢ (¬ (𝜑 ↔ 𝜓) ↔ (𝜑 ↔ ¬ 𝜓)) | |
| 2 | pm5.17 1013 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓)) ↔ (𝜑 ↔ ¬ 𝜓)) | |
| 3 | 1, 2 | bitr4i 278 | 1 ⊢ (¬ (𝜑 ↔ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: xor2 1517 |
| Copyright terms: Public domain | W3C validator |