|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > pm5.17 | Structured version Visualization version GIF version | ||
| Description: Theorem *5.17 of [WhiteheadRussell] p. 124. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 3-Jan-2013.) | 
| Ref | Expression | 
|---|---|
| pm5.17 | ⊢ (((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓)) ↔ (𝜑 ↔ ¬ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bicom 222 | . 2 ⊢ ((𝜑 ↔ ¬ 𝜓) ↔ (¬ 𝜓 ↔ 𝜑)) | |
| 2 | dfbi2 474 | . 2 ⊢ ((¬ 𝜓 ↔ 𝜑) ↔ ((¬ 𝜓 → 𝜑) ∧ (𝜑 → ¬ 𝜓))) | |
| 3 | orcom 871 | . . . 4 ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜓 ∨ 𝜑)) | |
| 4 | df-or 849 | . . . 4 ⊢ ((𝜓 ∨ 𝜑) ↔ (¬ 𝜓 → 𝜑)) | |
| 5 | 3, 4 | bitr2i 276 | . . 3 ⊢ ((¬ 𝜓 → 𝜑) ↔ (𝜑 ∨ 𝜓)) | 
| 6 | imnan 399 | . . 3 ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | |
| 7 | 5, 6 | anbi12i 628 | . 2 ⊢ (((¬ 𝜓 → 𝜑) ∧ (𝜑 → ¬ 𝜓)) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓))) | 
| 8 | 1, 2, 7 | 3bitrri 298 | 1 ⊢ (((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓)) ↔ (𝜑 ↔ ¬ 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 | 
| This theorem is referenced by: nbi2 1018 odd2np1 16378 ordtconnlem1 33923 sgnneg 34543 | 
| Copyright terms: Public domain | W3C validator |