Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm5.17 | Structured version Visualization version GIF version |
Description: Theorem *5.17 of [WhiteheadRussell] p. 124. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 3-Jan-2013.) |
Ref | Expression |
---|---|
pm5.17 | ⊢ (((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓)) ↔ (𝜑 ↔ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom 221 | . 2 ⊢ ((𝜑 ↔ ¬ 𝜓) ↔ (¬ 𝜓 ↔ 𝜑)) | |
2 | dfbi2 474 | . 2 ⊢ ((¬ 𝜓 ↔ 𝜑) ↔ ((¬ 𝜓 → 𝜑) ∧ (𝜑 → ¬ 𝜓))) | |
3 | orcom 866 | . . . 4 ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜓 ∨ 𝜑)) | |
4 | df-or 844 | . . . 4 ⊢ ((𝜓 ∨ 𝜑) ↔ (¬ 𝜓 → 𝜑)) | |
5 | 3, 4 | bitr2i 275 | . . 3 ⊢ ((¬ 𝜓 → 𝜑) ↔ (𝜑 ∨ 𝜓)) |
6 | imnan 399 | . . 3 ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | |
7 | 5, 6 | anbi12i 626 | . 2 ⊢ (((¬ 𝜓 → 𝜑) ∧ (𝜑 → ¬ 𝜓)) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓))) |
8 | 1, 2, 7 | 3bitrri 297 | 1 ⊢ (((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓)) ↔ (𝜑 ↔ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 |
This theorem is referenced by: nbi2 1012 odd2np1 15978 ordtconnlem1 31776 sgnneg 32407 |
Copyright terms: Public domain | W3C validator |