Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neeqtri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
Ref | Expression |
---|---|
neeqtr.1 | ⊢ 𝐴 ≠ 𝐵 |
neeqtr.2 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
neeqtri | ⊢ 𝐴 ≠ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeqtr.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
2 | neeqtr.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 2 | neeq2i 3008 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐴 ≠ 𝐶) |
4 | 1, 3 | mpbi 229 | 1 ⊢ 𝐴 ≠ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-ne 2943 |
This theorem is referenced by: neeqtrri 3016 sn-0ne2 40310 |
Copyright terms: Public domain | W3C validator |