MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neeqtri Structured version   Visualization version   GIF version

Theorem neeqtri 3013
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
neeqtr.1 𝐴𝐵
neeqtr.2 𝐵 = 𝐶
Assertion
Ref Expression
neeqtri 𝐴𝐶

Proof of Theorem neeqtri
StepHypRef Expression
1 neeqtr.1 . 2 𝐴𝐵
2 neeqtr.2 . . 3 𝐵 = 𝐶
32neeq2i 3006 . 2 (𝐴𝐵𝐴𝐶)
41, 3mpbi 233 1 𝐴𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  wne 2940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-9 2120  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1788  df-cleq 2729  df-ne 2941
This theorem is referenced by:  neeqtrri  3014  sn-0ne2  40097
  Copyright terms: Public domain W3C validator