| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neeqtri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
| Ref | Expression |
|---|---|
| neeqtr.1 | ⊢ 𝐴 ≠ 𝐵 |
| neeqtr.2 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| neeqtri | ⊢ 𝐴 ≠ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeqtr.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
| 2 | neeqtr.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 2 | neeq2i 3006 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐴 ≠ 𝐶) |
| 4 | 1, 3 | mpbi 230 | 1 ⊢ 𝐴 ≠ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ≠ wne 2940 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2729 df-ne 2941 |
| This theorem is referenced by: neeqtrri 3014 sn-0ne2 42436 |
| Copyright terms: Public domain | W3C validator |