| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-0ne2 | Structured version Visualization version GIF version | ||
| Description: 0ne2 12388 without ax-mulcom 11132. (Contributed by SN, 23-Jan-2024.) |
| Ref | Expression |
|---|---|
| sn-0ne2 | ⊢ 0 ≠ 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11174 | . . . 4 ⊢ 1 ∈ ℝ | |
| 2 | readdlid 42391 | . . . 4 ⊢ (1 ∈ ℝ → (0 + 1) = 1) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (0 + 1) = 1 |
| 4 | sn-1ne2 42253 | . . . . . 6 ⊢ 1 ≠ 2 | |
| 5 | 2re 12260 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
| 6 | 1, 5 | lttri2i 11288 | . . . . . 6 ⊢ (1 ≠ 2 ↔ (1 < 2 ∨ 2 < 1)) |
| 7 | 4, 6 | mpbi 230 | . . . . 5 ⊢ (1 < 2 ∨ 2 < 1) |
| 8 | 1red 11175 | . . . . . . 7 ⊢ (1 < 2 → 1 ∈ ℝ) | |
| 9 | 1, 5, 1 | ltadd2i 11305 | . . . . . . . . . 10 ⊢ (1 < 2 ↔ (1 + 1) < (1 + 2)) |
| 10 | 9 | biimpi 216 | . . . . . . . . 9 ⊢ (1 < 2 → (1 + 1) < (1 + 2)) |
| 11 | 1p1e2 12306 | . . . . . . . . 9 ⊢ (1 + 1) = 2 | |
| 12 | 1p2e3 12324 | . . . . . . . . 9 ⊢ (1 + 2) = 3 | |
| 13 | 10, 11, 12 | 3brtr3g 5140 | . . . . . . . 8 ⊢ (1 < 2 → 2 < 3) |
| 14 | 3re 12266 | . . . . . . . . 9 ⊢ 3 ∈ ℝ | |
| 15 | 1, 5, 14 | lttri 11300 | . . . . . . . 8 ⊢ ((1 < 2 ∧ 2 < 3) → 1 < 3) |
| 16 | 13, 15 | mpdan 687 | . . . . . . 7 ⊢ (1 < 2 → 1 < 3) |
| 17 | 8, 16 | ltned 11310 | . . . . . 6 ⊢ (1 < 2 → 1 ≠ 3) |
| 18 | 14 | a1i 11 | . . . . . . 7 ⊢ (2 < 1 → 3 ∈ ℝ) |
| 19 | 5, 1, 1 | ltadd2i 11305 | . . . . . . . . . 10 ⊢ (2 < 1 ↔ (1 + 2) < (1 + 1)) |
| 20 | 19 | biimpi 216 | . . . . . . . . 9 ⊢ (2 < 1 → (1 + 2) < (1 + 1)) |
| 21 | 20, 12, 11 | 3brtr3g 5140 | . . . . . . . 8 ⊢ (2 < 1 → 3 < 2) |
| 22 | 14, 5, 1 | lttri 11300 | . . . . . . . 8 ⊢ ((3 < 2 ∧ 2 < 1) → 3 < 1) |
| 23 | 21, 22 | mpancom 688 | . . . . . . 7 ⊢ (2 < 1 → 3 < 1) |
| 24 | 18, 23 | gtned 11309 | . . . . . 6 ⊢ (2 < 1 → 1 ≠ 3) |
| 25 | 17, 24 | jaoi 857 | . . . . 5 ⊢ ((1 < 2 ∨ 2 < 1) → 1 ≠ 3) |
| 26 | 7, 25 | ax-mp 5 | . . . 4 ⊢ 1 ≠ 3 |
| 27 | df-3 12250 | . . . 4 ⊢ 3 = (2 + 1) | |
| 28 | 26, 27 | neeqtri 2997 | . . 3 ⊢ 1 ≠ (2 + 1) |
| 29 | 3, 28 | eqnetri 2995 | . 2 ⊢ (0 + 1) ≠ (2 + 1) |
| 30 | oveq1 7394 | . . 3 ⊢ (0 = 2 → (0 + 1) = (2 + 1)) | |
| 31 | 30 | necon3i 2957 | . 2 ⊢ ((0 + 1) ≠ (2 + 1) → 0 ≠ 2) |
| 32 | 29, 31 | ax-mp 5 | 1 ⊢ 0 ≠ 2 |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5107 (class class class)co 7387 ℝcr 11067 0cc0 11068 1c1 11069 + caddc 11071 < clt 11208 2c2 12241 3c3 12242 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-2 12249 df-3 12250 df-resub 42354 |
| This theorem is referenced by: remul01 42395 sn-0tie0 42439 |
| Copyright terms: Public domain | W3C validator |