Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-0ne2 Structured version   Visualization version   GIF version

Theorem sn-0ne2 42436
Description: 0ne2 12473 without ax-mulcom 11219. (Contributed by SN, 23-Jan-2024.)
Assertion
Ref Expression
sn-0ne2 0 ≠ 2

Proof of Theorem sn-0ne2
StepHypRef Expression
1 1re 11261 . . . 4 1 ∈ ℝ
2 readdlid 42433 . . . 4 (1 ∈ ℝ → (0 + 1) = 1)
31, 2ax-mp 5 . . 3 (0 + 1) = 1
4 sn-1ne2 42300 . . . . . 6 1 ≠ 2
5 2re 12340 . . . . . . 7 2 ∈ ℝ
61, 5lttri2i 11375 . . . . . 6 (1 ≠ 2 ↔ (1 < 2 ∨ 2 < 1))
74, 6mpbi 230 . . . . 5 (1 < 2 ∨ 2 < 1)
8 1red 11262 . . . . . . 7 (1 < 2 → 1 ∈ ℝ)
91, 5, 1ltadd2i 11392 . . . . . . . . . 10 (1 < 2 ↔ (1 + 1) < (1 + 2))
109biimpi 216 . . . . . . . . 9 (1 < 2 → (1 + 1) < (1 + 2))
11 1p1e2 12391 . . . . . . . . 9 (1 + 1) = 2
12 1p2e3 12409 . . . . . . . . 9 (1 + 2) = 3
1310, 11, 123brtr3g 5176 . . . . . . . 8 (1 < 2 → 2 < 3)
14 3re 12346 . . . . . . . . 9 3 ∈ ℝ
151, 5, 14lttri 11387 . . . . . . . 8 ((1 < 2 ∧ 2 < 3) → 1 < 3)
1613, 15mpdan 687 . . . . . . 7 (1 < 2 → 1 < 3)
178, 16ltned 11397 . . . . . 6 (1 < 2 → 1 ≠ 3)
1814a1i 11 . . . . . . 7 (2 < 1 → 3 ∈ ℝ)
195, 1, 1ltadd2i 11392 . . . . . . . . . 10 (2 < 1 ↔ (1 + 2) < (1 + 1))
2019biimpi 216 . . . . . . . . 9 (2 < 1 → (1 + 2) < (1 + 1))
2120, 12, 113brtr3g 5176 . . . . . . . 8 (2 < 1 → 3 < 2)
2214, 5, 1lttri 11387 . . . . . . . 8 ((3 < 2 ∧ 2 < 1) → 3 < 1)
2321, 22mpancom 688 . . . . . . 7 (2 < 1 → 3 < 1)
2418, 23gtned 11396 . . . . . 6 (2 < 1 → 1 ≠ 3)
2517, 24jaoi 858 . . . . 5 ((1 < 2 ∨ 2 < 1) → 1 ≠ 3)
267, 25ax-mp 5 . . . 4 1 ≠ 3
27 df-3 12330 . . . 4 3 = (2 + 1)
2826, 27neeqtri 3013 . . 3 1 ≠ (2 + 1)
293, 28eqnetri 3011 . 2 (0 + 1) ≠ (2 + 1)
30 oveq1 7438 . . 3 (0 = 2 → (0 + 1) = (2 + 1))
3130necon3i 2973 . 2 ((0 + 1) ≠ (2 + 1) → 0 ≠ 2)
3229, 31ax-mp 5 1 0 ≠ 2
Colors of variables: wff setvar class
Syntax hints:  wo 848   = wceq 1540  wcel 2108  wne 2940   class class class wbr 5143  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   < clt 11295  2c2 12321  3c3 12322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-ltxr 11300  df-2 12329  df-3 12330  df-resub 42396
This theorem is referenced by:  remul01  42437  sn-0tie0  42469
  Copyright terms: Public domain W3C validator