Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-0ne2 Structured version   Visualization version   GIF version

Theorem sn-0ne2 42401
Description: 0ne2 12395 without ax-mulcom 11139. (Contributed by SN, 23-Jan-2024.)
Assertion
Ref Expression
sn-0ne2 0 ≠ 2

Proof of Theorem sn-0ne2
StepHypRef Expression
1 1re 11181 . . . 4 1 ∈ ℝ
2 readdlid 42398 . . . 4 (1 ∈ ℝ → (0 + 1) = 1)
31, 2ax-mp 5 . . 3 (0 + 1) = 1
4 sn-1ne2 42260 . . . . . 6 1 ≠ 2
5 2re 12267 . . . . . . 7 2 ∈ ℝ
61, 5lttri2i 11295 . . . . . 6 (1 ≠ 2 ↔ (1 < 2 ∨ 2 < 1))
74, 6mpbi 230 . . . . 5 (1 < 2 ∨ 2 < 1)
8 1red 11182 . . . . . . 7 (1 < 2 → 1 ∈ ℝ)
91, 5, 1ltadd2i 11312 . . . . . . . . . 10 (1 < 2 ↔ (1 + 1) < (1 + 2))
109biimpi 216 . . . . . . . . 9 (1 < 2 → (1 + 1) < (1 + 2))
11 1p1e2 12313 . . . . . . . . 9 (1 + 1) = 2
12 1p2e3 12331 . . . . . . . . 9 (1 + 2) = 3
1310, 11, 123brtr3g 5143 . . . . . . . 8 (1 < 2 → 2 < 3)
14 3re 12273 . . . . . . . . 9 3 ∈ ℝ
151, 5, 14lttri 11307 . . . . . . . 8 ((1 < 2 ∧ 2 < 3) → 1 < 3)
1613, 15mpdan 687 . . . . . . 7 (1 < 2 → 1 < 3)
178, 16ltned 11317 . . . . . 6 (1 < 2 → 1 ≠ 3)
1814a1i 11 . . . . . . 7 (2 < 1 → 3 ∈ ℝ)
195, 1, 1ltadd2i 11312 . . . . . . . . . 10 (2 < 1 ↔ (1 + 2) < (1 + 1))
2019biimpi 216 . . . . . . . . 9 (2 < 1 → (1 + 2) < (1 + 1))
2120, 12, 113brtr3g 5143 . . . . . . . 8 (2 < 1 → 3 < 2)
2214, 5, 1lttri 11307 . . . . . . . 8 ((3 < 2 ∧ 2 < 1) → 3 < 1)
2321, 22mpancom 688 . . . . . . 7 (2 < 1 → 3 < 1)
2418, 23gtned 11316 . . . . . 6 (2 < 1 → 1 ≠ 3)
2517, 24jaoi 857 . . . . 5 ((1 < 2 ∨ 2 < 1) → 1 ≠ 3)
267, 25ax-mp 5 . . . 4 1 ≠ 3
27 df-3 12257 . . . 4 3 = (2 + 1)
2826, 27neeqtri 2998 . . 3 1 ≠ (2 + 1)
293, 28eqnetri 2996 . 2 (0 + 1) ≠ (2 + 1)
30 oveq1 7397 . . 3 (0 = 2 → (0 + 1) = (2 + 1))
3130necon3i 2958 . 2 ((0 + 1) ≠ (2 + 1) → 0 ≠ 2)
3229, 31ax-mp 5 1 0 ≠ 2
Colors of variables: wff setvar class
Syntax hints:  wo 847   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  (class class class)co 7390  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   < clt 11215  2c2 12248  3c3 12249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-ltxr 11220  df-2 12256  df-3 12257  df-resub 42361
This theorem is referenced by:  remul01  42402  sn-0tie0  42446
  Copyright terms: Public domain W3C validator