| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-0ne2 | Structured version Visualization version GIF version | ||
| Description: 0ne2 12327 without ax-mulcom 11070. (Contributed by SN, 23-Jan-2024.) |
| Ref | Expression |
|---|---|
| sn-0ne2 | ⊢ 0 ≠ 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11112 | . . . 4 ⊢ 1 ∈ ℝ | |
| 2 | readdlid 42444 | . . . 4 ⊢ (1 ∈ ℝ → (0 + 1) = 1) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (0 + 1) = 1 |
| 4 | sn-1ne2 42306 | . . . . . 6 ⊢ 1 ≠ 2 | |
| 5 | 2re 12199 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
| 6 | 1, 5 | lttri2i 11227 | . . . . . 6 ⊢ (1 ≠ 2 ↔ (1 < 2 ∨ 2 < 1)) |
| 7 | 4, 6 | mpbi 230 | . . . . 5 ⊢ (1 < 2 ∨ 2 < 1) |
| 8 | 1red 11113 | . . . . . . 7 ⊢ (1 < 2 → 1 ∈ ℝ) | |
| 9 | 1, 5, 1 | ltadd2i 11244 | . . . . . . . . . 10 ⊢ (1 < 2 ↔ (1 + 1) < (1 + 2)) |
| 10 | 9 | biimpi 216 | . . . . . . . . 9 ⊢ (1 < 2 → (1 + 1) < (1 + 2)) |
| 11 | 1p1e2 12245 | . . . . . . . . 9 ⊢ (1 + 1) = 2 | |
| 12 | 1p2e3 12263 | . . . . . . . . 9 ⊢ (1 + 2) = 3 | |
| 13 | 10, 11, 12 | 3brtr3g 5122 | . . . . . . . 8 ⊢ (1 < 2 → 2 < 3) |
| 14 | 3re 12205 | . . . . . . . . 9 ⊢ 3 ∈ ℝ | |
| 15 | 1, 5, 14 | lttri 11239 | . . . . . . . 8 ⊢ ((1 < 2 ∧ 2 < 3) → 1 < 3) |
| 16 | 13, 15 | mpdan 687 | . . . . . . 7 ⊢ (1 < 2 → 1 < 3) |
| 17 | 8, 16 | ltned 11249 | . . . . . 6 ⊢ (1 < 2 → 1 ≠ 3) |
| 18 | 14 | a1i 11 | . . . . . . 7 ⊢ (2 < 1 → 3 ∈ ℝ) |
| 19 | 5, 1, 1 | ltadd2i 11244 | . . . . . . . . . 10 ⊢ (2 < 1 ↔ (1 + 2) < (1 + 1)) |
| 20 | 19 | biimpi 216 | . . . . . . . . 9 ⊢ (2 < 1 → (1 + 2) < (1 + 1)) |
| 21 | 20, 12, 11 | 3brtr3g 5122 | . . . . . . . 8 ⊢ (2 < 1 → 3 < 2) |
| 22 | 14, 5, 1 | lttri 11239 | . . . . . . . 8 ⊢ ((3 < 2 ∧ 2 < 1) → 3 < 1) |
| 23 | 21, 22 | mpancom 688 | . . . . . . 7 ⊢ (2 < 1 → 3 < 1) |
| 24 | 18, 23 | gtned 11248 | . . . . . 6 ⊢ (2 < 1 → 1 ≠ 3) |
| 25 | 17, 24 | jaoi 857 | . . . . 5 ⊢ ((1 < 2 ∨ 2 < 1) → 1 ≠ 3) |
| 26 | 7, 25 | ax-mp 5 | . . . 4 ⊢ 1 ≠ 3 |
| 27 | df-3 12189 | . . . 4 ⊢ 3 = (2 + 1) | |
| 28 | 26, 27 | neeqtri 3000 | . . 3 ⊢ 1 ≠ (2 + 1) |
| 29 | 3, 28 | eqnetri 2998 | . 2 ⊢ (0 + 1) ≠ (2 + 1) |
| 30 | oveq1 7353 | . . 3 ⊢ (0 = 2 → (0 + 1) = (2 + 1)) | |
| 31 | 30 | necon3i 2960 | . 2 ⊢ ((0 + 1) ≠ (2 + 1) → 0 ≠ 2) |
| 32 | 29, 31 | ax-mp 5 | 1 ⊢ 0 ≠ 2 |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5089 (class class class)co 7346 ℝcr 11005 0cc0 11006 1c1 11007 + caddc 11009 < clt 11146 2c2 12180 3c3 12181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 df-2 12188 df-3 12189 df-resub 42407 |
| This theorem is referenced by: remul01 42448 sn-0tie0 42492 |
| Copyright terms: Public domain | W3C validator |