| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-0ne2 | Structured version Visualization version GIF version | ||
| Description: 0ne2 12452 without ax-mulcom 11198. (Contributed by SN, 23-Jan-2024.) |
| Ref | Expression |
|---|---|
| sn-0ne2 | ⊢ 0 ≠ 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11240 | . . . 4 ⊢ 1 ∈ ℝ | |
| 2 | readdlid 42413 | . . . 4 ⊢ (1 ∈ ℝ → (0 + 1) = 1) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (0 + 1) = 1 |
| 4 | sn-1ne2 42282 | . . . . . 6 ⊢ 1 ≠ 2 | |
| 5 | 2re 12319 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
| 6 | 1, 5 | lttri2i 11354 | . . . . . 6 ⊢ (1 ≠ 2 ↔ (1 < 2 ∨ 2 < 1)) |
| 7 | 4, 6 | mpbi 230 | . . . . 5 ⊢ (1 < 2 ∨ 2 < 1) |
| 8 | 1red 11241 | . . . . . . 7 ⊢ (1 < 2 → 1 ∈ ℝ) | |
| 9 | 1, 5, 1 | ltadd2i 11371 | . . . . . . . . . 10 ⊢ (1 < 2 ↔ (1 + 1) < (1 + 2)) |
| 10 | 9 | biimpi 216 | . . . . . . . . 9 ⊢ (1 < 2 → (1 + 1) < (1 + 2)) |
| 11 | 1p1e2 12370 | . . . . . . . . 9 ⊢ (1 + 1) = 2 | |
| 12 | 1p2e3 12388 | . . . . . . . . 9 ⊢ (1 + 2) = 3 | |
| 13 | 10, 11, 12 | 3brtr3g 5157 | . . . . . . . 8 ⊢ (1 < 2 → 2 < 3) |
| 14 | 3re 12325 | . . . . . . . . 9 ⊢ 3 ∈ ℝ | |
| 15 | 1, 5, 14 | lttri 11366 | . . . . . . . 8 ⊢ ((1 < 2 ∧ 2 < 3) → 1 < 3) |
| 16 | 13, 15 | mpdan 687 | . . . . . . 7 ⊢ (1 < 2 → 1 < 3) |
| 17 | 8, 16 | ltned 11376 | . . . . . 6 ⊢ (1 < 2 → 1 ≠ 3) |
| 18 | 14 | a1i 11 | . . . . . . 7 ⊢ (2 < 1 → 3 ∈ ℝ) |
| 19 | 5, 1, 1 | ltadd2i 11371 | . . . . . . . . . 10 ⊢ (2 < 1 ↔ (1 + 2) < (1 + 1)) |
| 20 | 19 | biimpi 216 | . . . . . . . . 9 ⊢ (2 < 1 → (1 + 2) < (1 + 1)) |
| 21 | 20, 12, 11 | 3brtr3g 5157 | . . . . . . . 8 ⊢ (2 < 1 → 3 < 2) |
| 22 | 14, 5, 1 | lttri 11366 | . . . . . . . 8 ⊢ ((3 < 2 ∧ 2 < 1) → 3 < 1) |
| 23 | 21, 22 | mpancom 688 | . . . . . . 7 ⊢ (2 < 1 → 3 < 1) |
| 24 | 18, 23 | gtned 11375 | . . . . . 6 ⊢ (2 < 1 → 1 ≠ 3) |
| 25 | 17, 24 | jaoi 857 | . . . . 5 ⊢ ((1 < 2 ∨ 2 < 1) → 1 ≠ 3) |
| 26 | 7, 25 | ax-mp 5 | . . . 4 ⊢ 1 ≠ 3 |
| 27 | df-3 12309 | . . . 4 ⊢ 3 = (2 + 1) | |
| 28 | 26, 27 | neeqtri 3005 | . . 3 ⊢ 1 ≠ (2 + 1) |
| 29 | 3, 28 | eqnetri 3003 | . 2 ⊢ (0 + 1) ≠ (2 + 1) |
| 30 | oveq1 7417 | . . 3 ⊢ (0 = 2 → (0 + 1) = (2 + 1)) | |
| 31 | 30 | necon3i 2965 | . 2 ⊢ ((0 + 1) ≠ (2 + 1) → 0 ≠ 2) |
| 32 | 29, 31 | ax-mp 5 | 1 ⊢ 0 ≠ 2 |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 class class class wbr 5124 (class class class)co 7410 ℝcr 11133 0cc0 11134 1c1 11135 + caddc 11137 < clt 11274 2c2 12300 3c3 12301 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-ltxr 11279 df-2 12308 df-3 12309 df-resub 42376 |
| This theorem is referenced by: remul01 42417 sn-0tie0 42449 |
| Copyright terms: Public domain | W3C validator |