Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-0ne2 Structured version   Visualization version   GIF version

Theorem sn-0ne2 42394
Description: 0ne2 12388 without ax-mulcom 11132. (Contributed by SN, 23-Jan-2024.)
Assertion
Ref Expression
sn-0ne2 0 ≠ 2

Proof of Theorem sn-0ne2
StepHypRef Expression
1 1re 11174 . . . 4 1 ∈ ℝ
2 readdlid 42391 . . . 4 (1 ∈ ℝ → (0 + 1) = 1)
31, 2ax-mp 5 . . 3 (0 + 1) = 1
4 sn-1ne2 42253 . . . . . 6 1 ≠ 2
5 2re 12260 . . . . . . 7 2 ∈ ℝ
61, 5lttri2i 11288 . . . . . 6 (1 ≠ 2 ↔ (1 < 2 ∨ 2 < 1))
74, 6mpbi 230 . . . . 5 (1 < 2 ∨ 2 < 1)
8 1red 11175 . . . . . . 7 (1 < 2 → 1 ∈ ℝ)
91, 5, 1ltadd2i 11305 . . . . . . . . . 10 (1 < 2 ↔ (1 + 1) < (1 + 2))
109biimpi 216 . . . . . . . . 9 (1 < 2 → (1 + 1) < (1 + 2))
11 1p1e2 12306 . . . . . . . . 9 (1 + 1) = 2
12 1p2e3 12324 . . . . . . . . 9 (1 + 2) = 3
1310, 11, 123brtr3g 5140 . . . . . . . 8 (1 < 2 → 2 < 3)
14 3re 12266 . . . . . . . . 9 3 ∈ ℝ
151, 5, 14lttri 11300 . . . . . . . 8 ((1 < 2 ∧ 2 < 3) → 1 < 3)
1613, 15mpdan 687 . . . . . . 7 (1 < 2 → 1 < 3)
178, 16ltned 11310 . . . . . 6 (1 < 2 → 1 ≠ 3)
1814a1i 11 . . . . . . 7 (2 < 1 → 3 ∈ ℝ)
195, 1, 1ltadd2i 11305 . . . . . . . . . 10 (2 < 1 ↔ (1 + 2) < (1 + 1))
2019biimpi 216 . . . . . . . . 9 (2 < 1 → (1 + 2) < (1 + 1))
2120, 12, 113brtr3g 5140 . . . . . . . 8 (2 < 1 → 3 < 2)
2214, 5, 1lttri 11300 . . . . . . . 8 ((3 < 2 ∧ 2 < 1) → 3 < 1)
2321, 22mpancom 688 . . . . . . 7 (2 < 1 → 3 < 1)
2418, 23gtned 11309 . . . . . 6 (2 < 1 → 1 ≠ 3)
2517, 24jaoi 857 . . . . 5 ((1 < 2 ∨ 2 < 1) → 1 ≠ 3)
267, 25ax-mp 5 . . . 4 1 ≠ 3
27 df-3 12250 . . . 4 3 = (2 + 1)
2826, 27neeqtri 2997 . . 3 1 ≠ (2 + 1)
293, 28eqnetri 2995 . 2 (0 + 1) ≠ (2 + 1)
30 oveq1 7394 . . 3 (0 = 2 → (0 + 1) = (2 + 1))
3130necon3i 2957 . 2 ((0 + 1) ≠ (2 + 1) → 0 ≠ 2)
3229, 31ax-mp 5 1 0 ≠ 2
Colors of variables: wff setvar class
Syntax hints:  wo 847   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   < clt 11208  2c2 12241  3c3 12242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-ltxr 11213  df-2 12249  df-3 12250  df-resub 42354
This theorem is referenced by:  remul01  42395  sn-0tie0  42439
  Copyright terms: Public domain W3C validator