| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-0ne2 | Structured version Visualization version GIF version | ||
| Description: 0ne2 12364 without ax-mulcom 11108. (Contributed by SN, 23-Jan-2024.) |
| Ref | Expression |
|---|---|
| sn-0ne2 | ⊢ 0 ≠ 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11150 | . . . 4 ⊢ 1 ∈ ℝ | |
| 2 | readdlid 42384 | . . . 4 ⊢ (1 ∈ ℝ → (0 + 1) = 1) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (0 + 1) = 1 |
| 4 | sn-1ne2 42246 | . . . . . 6 ⊢ 1 ≠ 2 | |
| 5 | 2re 12236 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
| 6 | 1, 5 | lttri2i 11264 | . . . . . 6 ⊢ (1 ≠ 2 ↔ (1 < 2 ∨ 2 < 1)) |
| 7 | 4, 6 | mpbi 230 | . . . . 5 ⊢ (1 < 2 ∨ 2 < 1) |
| 8 | 1red 11151 | . . . . . . 7 ⊢ (1 < 2 → 1 ∈ ℝ) | |
| 9 | 1, 5, 1 | ltadd2i 11281 | . . . . . . . . . 10 ⊢ (1 < 2 ↔ (1 + 1) < (1 + 2)) |
| 10 | 9 | biimpi 216 | . . . . . . . . 9 ⊢ (1 < 2 → (1 + 1) < (1 + 2)) |
| 11 | 1p1e2 12282 | . . . . . . . . 9 ⊢ (1 + 1) = 2 | |
| 12 | 1p2e3 12300 | . . . . . . . . 9 ⊢ (1 + 2) = 3 | |
| 13 | 10, 11, 12 | 3brtr3g 5135 | . . . . . . . 8 ⊢ (1 < 2 → 2 < 3) |
| 14 | 3re 12242 | . . . . . . . . 9 ⊢ 3 ∈ ℝ | |
| 15 | 1, 5, 14 | lttri 11276 | . . . . . . . 8 ⊢ ((1 < 2 ∧ 2 < 3) → 1 < 3) |
| 16 | 13, 15 | mpdan 687 | . . . . . . 7 ⊢ (1 < 2 → 1 < 3) |
| 17 | 8, 16 | ltned 11286 | . . . . . 6 ⊢ (1 < 2 → 1 ≠ 3) |
| 18 | 14 | a1i 11 | . . . . . . 7 ⊢ (2 < 1 → 3 ∈ ℝ) |
| 19 | 5, 1, 1 | ltadd2i 11281 | . . . . . . . . . 10 ⊢ (2 < 1 ↔ (1 + 2) < (1 + 1)) |
| 20 | 19 | biimpi 216 | . . . . . . . . 9 ⊢ (2 < 1 → (1 + 2) < (1 + 1)) |
| 21 | 20, 12, 11 | 3brtr3g 5135 | . . . . . . . 8 ⊢ (2 < 1 → 3 < 2) |
| 22 | 14, 5, 1 | lttri 11276 | . . . . . . . 8 ⊢ ((3 < 2 ∧ 2 < 1) → 3 < 1) |
| 23 | 21, 22 | mpancom 688 | . . . . . . 7 ⊢ (2 < 1 → 3 < 1) |
| 24 | 18, 23 | gtned 11285 | . . . . . 6 ⊢ (2 < 1 → 1 ≠ 3) |
| 25 | 17, 24 | jaoi 857 | . . . . 5 ⊢ ((1 < 2 ∨ 2 < 1) → 1 ≠ 3) |
| 26 | 7, 25 | ax-mp 5 | . . . 4 ⊢ 1 ≠ 3 |
| 27 | df-3 12226 | . . . 4 ⊢ 3 = (2 + 1) | |
| 28 | 26, 27 | neeqtri 2997 | . . 3 ⊢ 1 ≠ (2 + 1) |
| 29 | 3, 28 | eqnetri 2995 | . 2 ⊢ (0 + 1) ≠ (2 + 1) |
| 30 | oveq1 7376 | . . 3 ⊢ (0 = 2 → (0 + 1) = (2 + 1)) | |
| 31 | 30 | necon3i 2957 | . 2 ⊢ ((0 + 1) ≠ (2 + 1) → 0 ≠ 2) |
| 32 | 29, 31 | ax-mp 5 | 1 ⊢ 0 ≠ 2 |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5102 (class class class)co 7369 ℝcr 11043 0cc0 11044 1c1 11045 + caddc 11047 < clt 11184 2c2 12217 3c3 12218 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 df-2 12225 df-3 12226 df-resub 42347 |
| This theorem is referenced by: remul01 42388 sn-0tie0 42432 |
| Copyright terms: Public domain | W3C validator |