![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-0ne2 | Structured version Visualization version GIF version |
Description: 0ne2 12420 without ax-mulcom 11173. (Contributed by SN, 23-Jan-2024.) |
Ref | Expression |
---|---|
sn-0ne2 | ⊢ 0 ≠ 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 11215 | . . . 4 ⊢ 1 ∈ ℝ | |
2 | readdlid 41836 | . . . 4 ⊢ (1 ∈ ℝ → (0 + 1) = 1) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (0 + 1) = 1 |
4 | sn-1ne2 41718 | . . . . . 6 ⊢ 1 ≠ 2 | |
5 | 2re 12287 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
6 | 1, 5 | lttri2i 11329 | . . . . . 6 ⊢ (1 ≠ 2 ↔ (1 < 2 ∨ 2 < 1)) |
7 | 4, 6 | mpbi 229 | . . . . 5 ⊢ (1 < 2 ∨ 2 < 1) |
8 | 1red 11216 | . . . . . . 7 ⊢ (1 < 2 → 1 ∈ ℝ) | |
9 | 1, 5, 1 | ltadd2i 11346 | . . . . . . . . . 10 ⊢ (1 < 2 ↔ (1 + 1) < (1 + 2)) |
10 | 9 | biimpi 215 | . . . . . . . . 9 ⊢ (1 < 2 → (1 + 1) < (1 + 2)) |
11 | 1p1e2 12338 | . . . . . . . . 9 ⊢ (1 + 1) = 2 | |
12 | 1p2e3 12356 | . . . . . . . . 9 ⊢ (1 + 2) = 3 | |
13 | 10, 11, 12 | 3brtr3g 5174 | . . . . . . . 8 ⊢ (1 < 2 → 2 < 3) |
14 | 3re 12293 | . . . . . . . . 9 ⊢ 3 ∈ ℝ | |
15 | 1, 5, 14 | lttri 11341 | . . . . . . . 8 ⊢ ((1 < 2 ∧ 2 < 3) → 1 < 3) |
16 | 13, 15 | mpdan 684 | . . . . . . 7 ⊢ (1 < 2 → 1 < 3) |
17 | 8, 16 | ltned 11351 | . . . . . 6 ⊢ (1 < 2 → 1 ≠ 3) |
18 | 14 | a1i 11 | . . . . . . 7 ⊢ (2 < 1 → 3 ∈ ℝ) |
19 | 5, 1, 1 | ltadd2i 11346 | . . . . . . . . . 10 ⊢ (2 < 1 ↔ (1 + 2) < (1 + 1)) |
20 | 19 | biimpi 215 | . . . . . . . . 9 ⊢ (2 < 1 → (1 + 2) < (1 + 1)) |
21 | 20, 12, 11 | 3brtr3g 5174 | . . . . . . . 8 ⊢ (2 < 1 → 3 < 2) |
22 | 14, 5, 1 | lttri 11341 | . . . . . . . 8 ⊢ ((3 < 2 ∧ 2 < 1) → 3 < 1) |
23 | 21, 22 | mpancom 685 | . . . . . . 7 ⊢ (2 < 1 → 3 < 1) |
24 | 18, 23 | gtned 11350 | . . . . . 6 ⊢ (2 < 1 → 1 ≠ 3) |
25 | 17, 24 | jaoi 854 | . . . . 5 ⊢ ((1 < 2 ∨ 2 < 1) → 1 ≠ 3) |
26 | 7, 25 | ax-mp 5 | . . . 4 ⊢ 1 ≠ 3 |
27 | df-3 12277 | . . . 4 ⊢ 3 = (2 + 1) | |
28 | 26, 27 | neeqtri 3007 | . . 3 ⊢ 1 ≠ (2 + 1) |
29 | 3, 28 | eqnetri 3005 | . 2 ⊢ (0 + 1) ≠ (2 + 1) |
30 | oveq1 7411 | . . 3 ⊢ (0 = 2 → (0 + 1) = (2 + 1)) | |
31 | 30 | necon3i 2967 | . 2 ⊢ ((0 + 1) ≠ (2 + 1) → 0 ≠ 2) |
32 | 29, 31 | ax-mp 5 | 1 ⊢ 0 ≠ 2 |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 844 = wceq 1533 ∈ wcel 2098 ≠ wne 2934 class class class wbr 5141 (class class class)co 7404 ℝcr 11108 0cc0 11109 1c1 11110 + caddc 11112 < clt 11249 2c2 12268 3c3 12269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-po 5581 df-so 5582 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-ltxr 11254 df-2 12276 df-3 12277 df-resub 41799 |
This theorem is referenced by: remul01 41840 sn-0tie0 41872 |
Copyright terms: Public domain | W3C validator |