Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-0ne2 | Structured version Visualization version GIF version |
Description: 0ne2 12180 without ax-mulcom 10935. (Contributed by SN, 23-Jan-2024.) |
Ref | Expression |
---|---|
sn-0ne2 | ⊢ 0 ≠ 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 10975 | . . . 4 ⊢ 1 ∈ ℝ | |
2 | readdid2 40386 | . . . 4 ⊢ (1 ∈ ℝ → (0 + 1) = 1) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (0 + 1) = 1 |
4 | sn-1ne2 40295 | . . . . . 6 ⊢ 1 ≠ 2 | |
5 | 2re 12047 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
6 | 1, 5 | lttri2i 11089 | . . . . . 6 ⊢ (1 ≠ 2 ↔ (1 < 2 ∨ 2 < 1)) |
7 | 4, 6 | mpbi 229 | . . . . 5 ⊢ (1 < 2 ∨ 2 < 1) |
8 | 1red 10976 | . . . . . . 7 ⊢ (1 < 2 → 1 ∈ ℝ) | |
9 | 1, 5, 1 | ltadd2i 11106 | . . . . . . . . . 10 ⊢ (1 < 2 ↔ (1 + 1) < (1 + 2)) |
10 | 9 | biimpi 215 | . . . . . . . . 9 ⊢ (1 < 2 → (1 + 1) < (1 + 2)) |
11 | 1p1e2 12098 | . . . . . . . . 9 ⊢ (1 + 1) = 2 | |
12 | 1p2e3 12116 | . . . . . . . . 9 ⊢ (1 + 2) = 3 | |
13 | 10, 11, 12 | 3brtr3g 5107 | . . . . . . . 8 ⊢ (1 < 2 → 2 < 3) |
14 | 3re 12053 | . . . . . . . . 9 ⊢ 3 ∈ ℝ | |
15 | 1, 5, 14 | lttri 11101 | . . . . . . . 8 ⊢ ((1 < 2 ∧ 2 < 3) → 1 < 3) |
16 | 13, 15 | mpdan 684 | . . . . . . 7 ⊢ (1 < 2 → 1 < 3) |
17 | 8, 16 | ltned 11111 | . . . . . 6 ⊢ (1 < 2 → 1 ≠ 3) |
18 | 14 | a1i 11 | . . . . . . 7 ⊢ (2 < 1 → 3 ∈ ℝ) |
19 | 5, 1, 1 | ltadd2i 11106 | . . . . . . . . . 10 ⊢ (2 < 1 ↔ (1 + 2) < (1 + 1)) |
20 | 19 | biimpi 215 | . . . . . . . . 9 ⊢ (2 < 1 → (1 + 2) < (1 + 1)) |
21 | 20, 12, 11 | 3brtr3g 5107 | . . . . . . . 8 ⊢ (2 < 1 → 3 < 2) |
22 | 14, 5, 1 | lttri 11101 | . . . . . . . 8 ⊢ ((3 < 2 ∧ 2 < 1) → 3 < 1) |
23 | 21, 22 | mpancom 685 | . . . . . . 7 ⊢ (2 < 1 → 3 < 1) |
24 | 18, 23 | gtned 11110 | . . . . . 6 ⊢ (2 < 1 → 1 ≠ 3) |
25 | 17, 24 | jaoi 854 | . . . . 5 ⊢ ((1 < 2 ∨ 2 < 1) → 1 ≠ 3) |
26 | 7, 25 | ax-mp 5 | . . . 4 ⊢ 1 ≠ 3 |
27 | df-3 12037 | . . . 4 ⊢ 3 = (2 + 1) | |
28 | 26, 27 | neeqtri 3016 | . . 3 ⊢ 1 ≠ (2 + 1) |
29 | 3, 28 | eqnetri 3014 | . 2 ⊢ (0 + 1) ≠ (2 + 1) |
30 | oveq1 7282 | . . 3 ⊢ (0 = 2 → (0 + 1) = (2 + 1)) | |
31 | 30 | necon3i 2976 | . 2 ⊢ ((0 + 1) ≠ (2 + 1) → 0 ≠ 2) |
32 | 29, 31 | ax-mp 5 | 1 ⊢ 0 ≠ 2 |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 844 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5074 (class class class)co 7275 ℝcr 10870 0cc0 10871 1c1 10872 + caddc 10874 < clt 11009 2c2 12028 3c3 12029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 df-2 12036 df-3 12037 df-resub 40349 |
This theorem is referenced by: remul01 40390 sn-0tie0 40421 |
Copyright terms: Public domain | W3C validator |