![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-0ne2 | Structured version Visualization version GIF version |
Description: 0ne2 12471 without ax-mulcom 11217. (Contributed by SN, 23-Jan-2024.) |
Ref | Expression |
---|---|
sn-0ne2 | ⊢ 0 ≠ 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 11259 | . . . 4 ⊢ 1 ∈ ℝ | |
2 | readdlid 42410 | . . . 4 ⊢ (1 ∈ ℝ → (0 + 1) = 1) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (0 + 1) = 1 |
4 | sn-1ne2 42279 | . . . . . 6 ⊢ 1 ≠ 2 | |
5 | 2re 12338 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
6 | 1, 5 | lttri2i 11373 | . . . . . 6 ⊢ (1 ≠ 2 ↔ (1 < 2 ∨ 2 < 1)) |
7 | 4, 6 | mpbi 230 | . . . . 5 ⊢ (1 < 2 ∨ 2 < 1) |
8 | 1red 11260 | . . . . . . 7 ⊢ (1 < 2 → 1 ∈ ℝ) | |
9 | 1, 5, 1 | ltadd2i 11390 | . . . . . . . . . 10 ⊢ (1 < 2 ↔ (1 + 1) < (1 + 2)) |
10 | 9 | biimpi 216 | . . . . . . . . 9 ⊢ (1 < 2 → (1 + 1) < (1 + 2)) |
11 | 1p1e2 12389 | . . . . . . . . 9 ⊢ (1 + 1) = 2 | |
12 | 1p2e3 12407 | . . . . . . . . 9 ⊢ (1 + 2) = 3 | |
13 | 10, 11, 12 | 3brtr3g 5181 | . . . . . . . 8 ⊢ (1 < 2 → 2 < 3) |
14 | 3re 12344 | . . . . . . . . 9 ⊢ 3 ∈ ℝ | |
15 | 1, 5, 14 | lttri 11385 | . . . . . . . 8 ⊢ ((1 < 2 ∧ 2 < 3) → 1 < 3) |
16 | 13, 15 | mpdan 687 | . . . . . . 7 ⊢ (1 < 2 → 1 < 3) |
17 | 8, 16 | ltned 11395 | . . . . . 6 ⊢ (1 < 2 → 1 ≠ 3) |
18 | 14 | a1i 11 | . . . . . . 7 ⊢ (2 < 1 → 3 ∈ ℝ) |
19 | 5, 1, 1 | ltadd2i 11390 | . . . . . . . . . 10 ⊢ (2 < 1 ↔ (1 + 2) < (1 + 1)) |
20 | 19 | biimpi 216 | . . . . . . . . 9 ⊢ (2 < 1 → (1 + 2) < (1 + 1)) |
21 | 20, 12, 11 | 3brtr3g 5181 | . . . . . . . 8 ⊢ (2 < 1 → 3 < 2) |
22 | 14, 5, 1 | lttri 11385 | . . . . . . . 8 ⊢ ((3 < 2 ∧ 2 < 1) → 3 < 1) |
23 | 21, 22 | mpancom 688 | . . . . . . 7 ⊢ (2 < 1 → 3 < 1) |
24 | 18, 23 | gtned 11394 | . . . . . 6 ⊢ (2 < 1 → 1 ≠ 3) |
25 | 17, 24 | jaoi 857 | . . . . 5 ⊢ ((1 < 2 ∨ 2 < 1) → 1 ≠ 3) |
26 | 7, 25 | ax-mp 5 | . . . 4 ⊢ 1 ≠ 3 |
27 | df-3 12328 | . . . 4 ⊢ 3 = (2 + 1) | |
28 | 26, 27 | neeqtri 3011 | . . 3 ⊢ 1 ≠ (2 + 1) |
29 | 3, 28 | eqnetri 3009 | . 2 ⊢ (0 + 1) ≠ (2 + 1) |
30 | oveq1 7438 | . . 3 ⊢ (0 = 2 → (0 + 1) = (2 + 1)) | |
31 | 30 | necon3i 2971 | . 2 ⊢ ((0 + 1) ≠ (2 + 1) → 0 ≠ 2) |
32 | 29, 31 | ax-mp 5 | 1 ⊢ 0 ≠ 2 |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 847 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 class class class wbr 5148 (class class class)co 7431 ℝcr 11152 0cc0 11153 1c1 11154 + caddc 11156 < clt 11293 2c2 12319 3c3 12320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 df-2 12327 df-3 12328 df-resub 42373 |
This theorem is referenced by: remul01 42414 sn-0tie0 42446 |
Copyright terms: Public domain | W3C validator |