Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neeq2i | Structured version Visualization version GIF version |
Description: Inference for inequality. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
Ref | Expression |
---|---|
neeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
neeq2i | ⊢ (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eqeq2i 2750 | . 2 ⊢ (𝐶 = 𝐴 ↔ 𝐶 = 𝐵) |
3 | 2 | necon3bii 2993 | 1 ⊢ (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1543 ≠ wne 2940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 df-cleq 2729 df-ne 2941 |
This theorem is referenced by: neeqtri 3013 omsucne 7663 suppvalbr 7907 upgr3v3e3cycl 28263 upgr4cycl4dv4e 28268 disjdsct 30755 divnumden2 30852 usgrgt2cycl 32805 nosgnn0 33598 |
Copyright terms: Public domain | W3C validator |