MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neeq2i Structured version   Visualization version   GIF version

Theorem neeq2i 2998
Description: Inference for inequality. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Wolf Lammen, 19-Nov-2019.)
Hypothesis
Ref Expression
neeq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
neeq2i (𝐶𝐴𝐶𝐵)

Proof of Theorem neeq2i
StepHypRef Expression
1 neeq1i.1 . . 3 𝐴 = 𝐵
21eqeq2i 2737 . 2 (𝐶 = 𝐴𝐶 = 𝐵)
32necon3bii 2985 1 (𝐶𝐴𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1533  wne 2932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1774  df-cleq 2716  df-ne 2933
This theorem is referenced by:  neeqtri  3005  omsucne  7868  suppvalbr  8145  nosgnn0  27532  upgr3v3e3cycl  29928  upgr4cycl4dv4e  29933  disjdsct  32419  divnumden2  32517  usgrgt2cycl  34639  onov0suclim  42574
  Copyright terms: Public domain W3C validator