MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neeq2i Structured version   Visualization version   GIF version

Theorem neeq2i 3003
Description: Inference for inequality. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Wolf Lammen, 19-Nov-2019.)
Hypothesis
Ref Expression
neeq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
neeq2i (𝐶𝐴𝐶𝐵)

Proof of Theorem neeq2i
StepHypRef Expression
1 neeq1i.1 . . 3 𝐴 = 𝐵
21eqeq2i 2747 . 2 (𝐶 = 𝐴𝐶 = 𝐵)
32necon3bii 2990 1 (𝐶𝐴𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1536  wne 2937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-9 2115  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1776  df-cleq 2726  df-ne 2938
This theorem is referenced by:  neeqtri  3010  omsucne  7905  suppvalbr  8187  nosgnn0  27717  upgr3v3e3cycl  30208  upgr4cycl4dv4e  30213  disjdsct  32717  divnumden2  32821  usgrgt2cycl  35114  onov0suclim  43263
  Copyright terms: Public domain W3C validator