| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neeq2i | Structured version Visualization version GIF version | ||
| Description: Inference for inequality. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
| Ref | Expression |
|---|---|
| neeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| neeq2i | ⊢ (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eqeq2i 2744 | . 2 ⊢ (𝐶 = 𝐴 ↔ 𝐶 = 𝐵) |
| 3 | 2 | necon3bii 2980 | 1 ⊢ (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ne 2929 |
| This theorem is referenced by: neeqtri 3000 omsucne 7810 suppvalbr 8089 nosgnn0 27592 upgr3v3e3cycl 30152 upgr4cycl4dv4e 30157 disjdsct 32676 divnumden2 32790 usgrgt2cycl 35166 onov0suclim 43307 |
| Copyright terms: Public domain | W3C validator |