![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neeq2i | Structured version Visualization version GIF version |
Description: Inference for inequality. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
Ref | Expression |
---|---|
neeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
neeq2i | ⊢ (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eqeq2i 2753 | . 2 ⊢ (𝐶 = 𝐴 ↔ 𝐶 = 𝐵) |
3 | 2 | necon3bii 2999 | 1 ⊢ (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ne 2947 |
This theorem is referenced by: neeqtri 3019 omsucne 7922 suppvalbr 8205 nosgnn0 27721 upgr3v3e3cycl 30212 upgr4cycl4dv4e 30217 disjdsct 32714 divnumden2 32819 usgrgt2cycl 35098 onov0suclim 43236 |
Copyright terms: Public domain | W3C validator |