Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neeq2i | Structured version Visualization version GIF version |
Description: Inference for inequality. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
Ref | Expression |
---|---|
neeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
neeq2i | ⊢ (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eqeq2i 2751 | . 2 ⊢ (𝐶 = 𝐴 ↔ 𝐶 = 𝐵) |
3 | 2 | necon3bii 2995 | 1 ⊢ (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-ne 2943 |
This theorem is referenced by: neeqtri 3015 omsucne 7706 suppvalbr 7952 upgr3v3e3cycl 28445 upgr4cycl4dv4e 28450 disjdsct 30937 divnumden2 31034 usgrgt2cycl 32992 nosgnn0 33788 |
Copyright terms: Public domain | W3C validator |