MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neeq2i Structured version   Visualization version   GIF version

Theorem neeq2i 3008
Description: Inference for inequality. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Wolf Lammen, 19-Nov-2019.)
Hypothesis
Ref Expression
neeq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
neeq2i (𝐶𝐴𝐶𝐵)

Proof of Theorem neeq2i
StepHypRef Expression
1 neeq1i.1 . . 3 𝐴 = 𝐵
21eqeq2i 2751 . 2 (𝐶 = 𝐴𝐶 = 𝐵)
32necon3bii 2995 1 (𝐶𝐴𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wne 2942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-cleq 2730  df-ne 2943
This theorem is referenced by:  neeqtri  3015  omsucne  7706  suppvalbr  7952  upgr3v3e3cycl  28445  upgr4cycl4dv4e  28450  disjdsct  30937  divnumden2  31034  usgrgt2cycl  32992  nosgnn0  33788
  Copyright terms: Public domain W3C validator