Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqnetrri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
Ref | Expression |
---|---|
eqnetrr.1 | ⊢ 𝐴 = 𝐵 |
eqnetrr.2 | ⊢ 𝐴 ≠ 𝐶 |
Ref | Expression |
---|---|
eqnetrri | ⊢ 𝐵 ≠ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqnetrr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eqcomi 2747 | . 2 ⊢ 𝐵 = 𝐴 |
3 | eqnetrr.2 | . 2 ⊢ 𝐴 ≠ 𝐶 | |
4 | 2, 3 | eqnetri 3014 | 1 ⊢ 𝐵 ≠ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-ne 2944 |
This theorem is referenced by: ballotlemii 32470 bj-2upln1upl 35214 sn-0tie0 40421 wallispilem4 43609 |
Copyright terms: Public domain | W3C validator |