| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqnetrri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
| Ref | Expression |
|---|---|
| eqnetrr.1 | ⊢ 𝐴 = 𝐵 |
| eqnetrr.2 | ⊢ 𝐴 ≠ 𝐶 |
| Ref | Expression |
|---|---|
| eqnetrri | ⊢ 𝐵 ≠ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqnetrr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eqcomi 2743 | . 2 ⊢ 𝐵 = 𝐴 |
| 3 | eqnetrr.2 | . 2 ⊢ 𝐴 ≠ 𝐶 | |
| 4 | 2, 3 | eqnetri 3001 | 1 ⊢ 𝐵 ≠ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ≠ wne 2931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2726 df-ne 2932 |
| This theorem is referenced by: ballotlemii 34465 bj-2upln1upl 36984 sn-0tie0 42432 wallispilem4 46040 |
| Copyright terms: Public domain | W3C validator |