MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neeqtrri Structured version   Visualization version   GIF version

Theorem neeqtrri 3005
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
neeqtrr.1 𝐴𝐵
neeqtrr.2 𝐶 = 𝐵
Assertion
Ref Expression
neeqtrri 𝐴𝐶

Proof of Theorem neeqtrri
StepHypRef Expression
1 neeqtrr.1 . 2 𝐴𝐵
2 neeqtrr.2 . . 3 𝐶 = 𝐵
32eqcomi 2744 . 2 𝐵 = 𝐶
41, 3neeqtri 3004 1 𝐴𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wne 2932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2727  df-ne 2933
This theorem is referenced by:  nlim1  8499  nlim2  8500  1one2o  8656  cflim2  10275  pnfnemnf  11288  basendxnmulrndx  17308  plusgndxnmulrndx  17309  slotsbhcdif  17427  xrsnsgrp  21368  slotsinbpsd  28366  slotslnbpsd  28367  setsvtx  28960  limsucncmpi  36409  sn-1ne2  42262
  Copyright terms: Public domain W3C validator