MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neeqtrri Structured version   Visualization version   GIF version

Theorem neeqtrri 3001
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
neeqtrr.1 𝐴𝐵
neeqtrr.2 𝐶 = 𝐵
Assertion
Ref Expression
neeqtrri 𝐴𝐶

Proof of Theorem neeqtrri
StepHypRef Expression
1 neeqtrr.1 . 2 𝐴𝐵
2 neeqtrr.2 . . 3 𝐶 = 𝐵
32eqcomi 2740 . 2 𝐵 = 𝐶
41, 3neeqtri 3000 1 𝐴𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wne 2928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-cleq 2723  df-ne 2929
This theorem is referenced by:  nlim1  8404  nlim2  8405  1one2o  8561  cflim2  10154  pnfnemnf  11167  basendxnmulrndx  17200  plusgndxnmulrndx  17201  slotsbhcdif  17319  xrsnsgrp  21344  slotsinbpsd  28419  slotslnbpsd  28420  setsvtx  29013  limsucncmpi  36487  sn-1ne2  42306
  Copyright terms: Public domain W3C validator