Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neeqtrri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
Ref | Expression |
---|---|
neeqtrr.1 | ⊢ 𝐴 ≠ 𝐵 |
neeqtrr.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
neeqtrri | ⊢ 𝐴 ≠ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeqtrr.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
2 | neeqtrr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2746 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | neeqtri 3014 | 1 ⊢ 𝐴 ≠ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ≠ wne 2941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1781 df-cleq 2729 df-ne 2942 |
This theorem is referenced by: nlim1 8365 nlim2 8366 1one2o 8522 cflim2 10089 pnfnemnf 11100 resslemOLD 17019 basendxnplusgndxOLD 17060 basendxnmulrndx 17072 basendxnmulrndxOLD 17073 plusgndxnmulrndx 17074 slotsbhcdif 17192 slotsbhcdifOLD 17193 symgvalstructOLD 19072 rmodislmodOLD 20263 cnfldfunALTOLD 20682 xrsnsgrp 20705 zlmlemOLD 20790 matvscaOLD 21636 tnglemOLD 23868 slotsinbpsd 26910 slotslnbpsd 26911 setsvtx 27513 resvlemOLD 31635 limsucncmpi 34695 sn-1ne2 40505 mnringbasedOLD 42058 mnringaddgdOLD 42064 mnringscadOLD 42069 mnringvscadOLD 42071 |
Copyright terms: Public domain | W3C validator |