![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neeqtrri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
Ref | Expression |
---|---|
neeqtrr.1 | ⊢ 𝐴 ≠ 𝐵 |
neeqtrr.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
neeqtrri | ⊢ 𝐴 ≠ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeqtrr.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
2 | neeqtrr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2744 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | neeqtri 3011 | 1 ⊢ 𝐴 ≠ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ≠ wne 2938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-ne 2939 |
This theorem is referenced by: nlim1 8526 nlim2 8527 1one2o 8683 cflim2 10301 pnfnemnf 11314 resslemOLD 17288 basendxnplusgndxOLD 17329 basendxnmulrndx 17341 basendxnmulrndxOLD 17342 plusgndxnmulrndx 17343 slotsbhcdif 17461 slotsbhcdifOLD 17462 symgvalstructOLD 19430 rmodislmodOLD 20946 cnfldfunALTOLDOLD 21411 xrsnsgrp 21438 zlmlemOLD 21546 matvscaOLD 22438 tnglemOLD 24670 slotsinbpsd 28464 slotslnbpsd 28465 setsvtx 29067 resvlemOLD 33338 limsucncmpi 36428 sn-1ne2 42279 mnringbasedOLD 44208 mnringaddgdOLD 44214 mnringscadOLD 44219 mnringvscadOLD 44221 |
Copyright terms: Public domain | W3C validator |