MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neeqtrri Structured version   Visualization version   GIF version

Theorem neeqtrri 3015
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
neeqtrr.1 𝐴𝐵
neeqtrr.2 𝐶 = 𝐵
Assertion
Ref Expression
neeqtrri 𝐴𝐶

Proof of Theorem neeqtrri
StepHypRef Expression
1 neeqtrr.1 . 2 𝐴𝐵
2 neeqtrr.2 . . 3 𝐶 = 𝐵
32eqcomi 2746 . 2 𝐵 = 𝐶
41, 3neeqtri 3014 1 𝐴𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wne 2941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-9 2115  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1781  df-cleq 2729  df-ne 2942
This theorem is referenced by:  nlim1  8365  nlim2  8366  1one2o  8522  cflim2  10089  pnfnemnf  11100  resslemOLD  17019  basendxnplusgndxOLD  17060  basendxnmulrndx  17072  basendxnmulrndxOLD  17073  plusgndxnmulrndx  17074  slotsbhcdif  17192  slotsbhcdifOLD  17193  symgvalstructOLD  19072  rmodislmodOLD  20263  cnfldfunALTOLD  20682  xrsnsgrp  20705  zlmlemOLD  20790  matvscaOLD  21636  tnglemOLD  23868  slotsinbpsd  26910  slotslnbpsd  26911  setsvtx  27513  resvlemOLD  31635  limsucncmpi  34695  sn-1ne2  40505  mnringbasedOLD  42058  mnringaddgdOLD  42064  mnringscadOLD  42069  mnringvscadOLD  42071
  Copyright terms: Public domain W3C validator