MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neeqtrri Structured version   Visualization version   GIF version

Theorem neeqtrri 3015
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
neeqtrr.1 𝐴𝐵
neeqtrr.2 𝐶 = 𝐵
Assertion
Ref Expression
neeqtrri 𝐴𝐶

Proof of Theorem neeqtrri
StepHypRef Expression
1 neeqtrr.1 . 2 𝐴𝐵
2 neeqtrr.2 . . 3 𝐶 = 𝐵
32eqcomi 2742 . 2 𝐵 = 𝐶
41, 3neeqtri 3014 1 𝐴𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wne 2941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1783  df-cleq 2725  df-ne 2942
This theorem is referenced by:  nlim1  8489  nlim2  8490  1one2o  8645  cflim2  10258  pnfnemnf  11269  resslemOLD  17187  basendxnplusgndxOLD  17228  basendxnmulrndx  17240  basendxnmulrndxOLD  17241  plusgndxnmulrndx  17242  slotsbhcdif  17360  slotsbhcdifOLD  17361  symgvalstructOLD  19265  rmodislmodOLD  20541  cnfldfunALTOLD  20958  xrsnsgrp  20981  zlmlemOLD  21067  matvscaOLD  21918  tnglemOLD  24150  slotsinbpsd  27692  slotslnbpsd  27693  setsvtx  28295  resvlemOLD  32446  limsucncmpi  35330  sn-1ne2  41179  mnringbasedOLD  42971  mnringaddgdOLD  42977  mnringscadOLD  42982  mnringvscadOLD  42984
  Copyright terms: Public domain W3C validator