Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neeqtrri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
Ref | Expression |
---|---|
neeqtrr.1 | ⊢ 𝐴 ≠ 𝐵 |
neeqtrr.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
neeqtrri | ⊢ 𝐴 ≠ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeqtrr.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
2 | neeqtrr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2748 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | neeqtri 3017 | 1 ⊢ 𝐴 ≠ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ≠ wne 2944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 df-cleq 2731 df-ne 2945 |
This theorem is referenced by: 1one2o 8450 cflim2 10003 pnfnemnf 11014 resslemOLD 16933 basendxnplusgndxOLD 16974 basendxnmulrndx 16986 basendxnmulrndxOLD 16987 plusgndxnmulrndx 16988 slotsbhcdif 17106 slotsbhcdifOLD 17107 symgvalstructOLD 18986 rmodislmodOLD 20173 cnfldfunOLD 20591 xrsnsgrp 20615 zlmlemOLD 20700 matvscaOLD 21546 tnglemOLD 23778 slotsinbpsd 26783 slotslnbpsd 26784 setsvtx 27386 resvlemOLD 31510 limsucncmpi 34613 sn-1ne2 40275 mnringbasedOLD 41783 mnringaddgdOLD 41789 mnringscadOLD 41794 mnringvscadOLD 41796 |
Copyright terms: Public domain | W3C validator |