![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neeqtrri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
Ref | Expression |
---|---|
neeqtrr.1 | ⊢ 𝐴 ≠ 𝐵 |
neeqtrr.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
neeqtrri | ⊢ 𝐴 ≠ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeqtrr.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
2 | neeqtrr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2749 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | neeqtri 3019 | 1 ⊢ 𝐴 ≠ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ne 2947 |
This theorem is referenced by: nlim1 8545 nlim2 8546 1one2o 8702 cflim2 10332 pnfnemnf 11345 resslemOLD 17301 basendxnplusgndxOLD 17342 basendxnmulrndx 17354 basendxnmulrndxOLD 17355 plusgndxnmulrndx 17356 slotsbhcdif 17474 slotsbhcdifOLD 17475 symgvalstructOLD 19439 rmodislmodOLD 20951 cnfldfunALTOLDOLD 21416 xrsnsgrp 21443 zlmlemOLD 21551 matvscaOLD 22443 tnglemOLD 24675 slotsinbpsd 28467 slotslnbpsd 28468 setsvtx 29070 resvlemOLD 33323 limsucncmpi 36411 sn-1ne2 42254 mnringbasedOLD 44181 mnringaddgdOLD 44187 mnringscadOLD 44192 mnringvscadOLD 44194 |
Copyright terms: Public domain | W3C validator |