Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neeqtrri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
Ref | Expression |
---|---|
neeqtrr.1 | ⊢ 𝐴 ≠ 𝐵 |
neeqtrr.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
neeqtrri | ⊢ 𝐴 ≠ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeqtrr.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
2 | neeqtrr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2745 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | neeqtri 3014 | 1 ⊢ 𝐴 ≠ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ≠ wne 2941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1780 df-cleq 2728 df-ne 2942 |
This theorem is referenced by: nlim1 8350 nlim2 8351 1one2o 8507 cflim2 10065 pnfnemnf 11076 resslemOLD 16997 basendxnplusgndxOLD 17038 basendxnmulrndx 17050 basendxnmulrndxOLD 17051 plusgndxnmulrndx 17052 slotsbhcdif 17170 slotsbhcdifOLD 17171 symgvalstructOLD 19050 rmodislmodOLD 20237 cnfldfunALTOLD 20656 xrsnsgrp 20679 zlmlemOLD 20764 matvscaOLD 21610 tnglemOLD 23842 slotsinbpsd 26847 slotslnbpsd 26848 setsvtx 27450 resvlemOLD 31576 limsucncmpi 34679 sn-1ne2 40332 mnringbasedOLD 41868 mnringaddgdOLD 41874 mnringscadOLD 41879 mnringvscadOLD 41881 |
Copyright terms: Public domain | W3C validator |