| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neeqtrri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
| Ref | Expression |
|---|---|
| neeqtrr.1 | ⊢ 𝐴 ≠ 𝐵 |
| neeqtrr.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| neeqtrri | ⊢ 𝐴 ≠ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeqtrr.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
| 2 | neeqtrr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2738 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | neeqtri 2997 | 1 ⊢ 𝐴 ≠ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ne 2926 |
| This theorem is referenced by: nlim1 8407 nlim2 8408 1one2o 8564 cflim2 10157 pnfnemnf 11170 basendxnmulrndx 17200 plusgndxnmulrndx 17201 slotsbhcdif 17319 xrsnsgrp 21314 slotsinbpsd 28386 slotslnbpsd 28387 setsvtx 28980 limsucncmpi 36419 sn-1ne2 42238 |
| Copyright terms: Public domain | W3C validator |