MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neeqtrri Structured version   Visualization version   GIF version

Theorem neeqtrri 3015
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
neeqtrr.1 𝐴𝐵
neeqtrr.2 𝐶 = 𝐵
Assertion
Ref Expression
neeqtrri 𝐴𝐶

Proof of Theorem neeqtrri
StepHypRef Expression
1 neeqtrr.1 . 2 𝐴𝐵
2 neeqtrr.2 . . 3 𝐶 = 𝐵
32eqcomi 2745 . 2 𝐵 = 𝐶
41, 3neeqtri 3014 1 𝐴𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wne 2941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-9 2114  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1780  df-cleq 2728  df-ne 2942
This theorem is referenced by:  nlim1  8350  nlim2  8351  1one2o  8507  cflim2  10065  pnfnemnf  11076  resslemOLD  16997  basendxnplusgndxOLD  17038  basendxnmulrndx  17050  basendxnmulrndxOLD  17051  plusgndxnmulrndx  17052  slotsbhcdif  17170  slotsbhcdifOLD  17171  symgvalstructOLD  19050  rmodislmodOLD  20237  cnfldfunALTOLD  20656  xrsnsgrp  20679  zlmlemOLD  20764  matvscaOLD  21610  tnglemOLD  23842  slotsinbpsd  26847  slotslnbpsd  26848  setsvtx  27450  resvlemOLD  31576  limsucncmpi  34679  sn-1ne2  40332  mnringbasedOLD  41868  mnringaddgdOLD  41874  mnringscadOLD  41879  mnringvscadOLD  41881
  Copyright terms: Public domain W3C validator