Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfbiit Structured version   Visualization version   GIF version

Theorem nfbiit 1852
 Description: Equivalence theorem for the non-freeness predicate. Closed form of nfbii 1853. (Contributed by Giovanni Mascellani, 10-Apr-2018.) Reduce axiom usage. (Revised by BJ, 6-May-2019.)
Assertion
Ref Expression
nfbiit (∀𝑥(𝜑𝜓) → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓))

Proof of Theorem nfbiit
StepHypRef Expression
1 exbi 1848 . . 3 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓))
2 albi 1820 . . 3 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓))
31, 2imbi12d 348 . 2 (∀𝑥(𝜑𝜓) → ((∃𝑥𝜑 → ∀𝑥𝜑) ↔ (∃𝑥𝜓 → ∀𝑥𝜓)))
4 df-nf 1786 . 2 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
5 df-nf 1786 . 2 (Ⅎ𝑥𝜓 ↔ (∃𝑥𝜓 → ∀𝑥𝜓))
63, 4, 53bitr4g 317 1 (∀𝑥(𝜑𝜓) → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209  ∀wal 1536  ∃wex 1781  Ⅎwnf 1785 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811 This theorem depends on definitions:  df-bi 210  df-ex 1782  df-nf 1786 This theorem is referenced by:  nfbii  1853
 Copyright terms: Public domain W3C validator