Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfbiit | Structured version Visualization version GIF version |
Description: Equivalence theorem for the nonfreeness predicate. Closed form of nfbii 1855. (Contributed by Giovanni Mascellani, 10-Apr-2018.) Reduce axiom usage. (Revised by BJ, 6-May-2019.) |
Ref | Expression |
---|---|
nfbiit | ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exbi 1850 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓)) | |
2 | albi 1822 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓)) | |
3 | 1, 2 | imbi12d 344 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ((∃𝑥𝜑 → ∀𝑥𝜑) ↔ (∃𝑥𝜓 → ∀𝑥𝜓))) |
4 | df-nf 1788 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | |
5 | df-nf 1788 | . 2 ⊢ (Ⅎ𝑥𝜓 ↔ (∃𝑥𝜓 → ∀𝑥𝜓)) | |
6 | 3, 4, 5 | 3bitr4g 313 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∃wex 1783 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-nf 1788 |
This theorem is referenced by: nfbii 1855 |
Copyright terms: Public domain | W3C validator |