|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nfbiit | Structured version Visualization version GIF version | ||
| Description: Equivalence theorem for the nonfreeness predicate. Closed form of nfbii 1852. (Contributed by Giovanni Mascellani, 10-Apr-2018.) Reduce axiom usage. (Revised by BJ, 6-May-2019.) | 
| Ref | Expression | 
|---|---|
| nfbiit | ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | exbi 1847 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓)) | |
| 2 | albi 1818 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓)) | |
| 3 | 1, 2 | imbi12d 344 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ((∃𝑥𝜑 → ∀𝑥𝜑) ↔ (∃𝑥𝜓 → ∀𝑥𝜓))) | 
| 4 | df-nf 1784 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | |
| 5 | df-nf 1784 | . 2 ⊢ (Ⅎ𝑥𝜓 ↔ (∃𝑥𝜓 → ∀𝑥𝜓)) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 | 
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 | 
| This theorem is referenced by: nfbii 1852 | 
| Copyright terms: Public domain | W3C validator |