![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfbii | Structured version Visualization version GIF version |
Description: Equality theorem for the nonfreeness predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) df-nf 1782 changed. (Revised by Wolf Lammen, 12-Sep-2021.) |
Ref | Expression |
---|---|
nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
nfbii | ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfbiit 1849 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓)) | |
2 | nfbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | mpg 1795 | 1 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-ex 1778 df-nf 1782 |
This theorem is referenced by: nfxfr 1851 nfxfrd 1852 dvelimhw 2351 nfeqf1 2387 nfceqi 2905 nfra2wOLD 3306 dfnfc2 4953 nfan1c 35049 bj-dvelimdv1 36818 bj-nfcf 36889 iunconnlem2 44906 |
Copyright terms: Public domain | W3C validator |