Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfbii | Structured version Visualization version GIF version |
Description: Equality theorem for the nonfreeness predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) df-nf 1788 changed. (Revised by Wolf Lammen, 12-Sep-2021.) |
Ref | Expression |
---|---|
nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
nfbii | ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfbiit 1854 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓)) | |
2 | nfbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | mpg 1801 | 1 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-nf 1788 |
This theorem is referenced by: nfxfr 1856 nfxfrd 1857 dvelimhw 2345 nfeqf1 2379 nfceqi 2903 nfra2wOLD 3152 dfnfc2 4860 bj-dvelimdv1 34963 bj-nfcf 35038 iunconnlem2 42444 |
Copyright terms: Public domain | W3C validator |