MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfbii Structured version   Visualization version   GIF version

Theorem nfbii 1849
Description: Equality theorem for the nonfreeness predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) df-nf 1781 changed. (Revised by Wolf Lammen, 12-Sep-2021.)
Hypothesis
Ref Expression
nfbii.1 (𝜑𝜓)
Assertion
Ref Expression
nfbii (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓)

Proof of Theorem nfbii
StepHypRef Expression
1 nfbiit 1848 . 2 (∀𝑥(𝜑𝜓) → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓))
2 nfbii.1 . 2 (𝜑𝜓)
31, 2mpg 1794 1 (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wnf 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806
This theorem depends on definitions:  df-bi 207  df-ex 1777  df-nf 1781
This theorem is referenced by:  nfxfr  1850  nfxfrd  1851  dvelimhw  2346  nfeqf1  2382  nfceqi  2900  nfra2wOLD  3298  dfnfc2  4934  nfan1c  35066  bj-dvelimdv1  36835  bj-nfcf  36906  iunconnlem2  44933
  Copyright terms: Public domain W3C validator