Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfich1 Structured version   Visualization version   GIF version

Theorem nfich1 47392
Description: The first interchangeable setvar variable is not free. (Contributed by AV, 21-Aug-2023.)
Assertion
Ref Expression
nfich1 𝑥[𝑥𝑦]𝜑

Proof of Theorem nfich1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 df-ich 47391 . 2 ([𝑥𝑦]𝜑 ↔ ∀𝑥𝑦([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑𝜑))
2 nfa1 2150 . 2 𝑥𝑥𝑦([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑𝜑)
31, 2nfxfr 1852 1 𝑥[𝑥𝑦]𝜑
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1537  wnf 1782  [wsb 2063  [wich 47390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-10 2140
This theorem depends on definitions:  df-bi 207  df-or 848  df-ex 1779  df-nf 1783  df-ich 47391
This theorem is referenced by:  ichnfim  47409  ich2exprop  47416  ichreuopeq  47418
  Copyright terms: Public domain W3C validator