Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfich1 Structured version   Visualization version   GIF version

Theorem nfich1 47323
Description: The first interchangeable setvar variable is not free. (Contributed by AV, 21-Aug-2023.)
Assertion
Ref Expression
nfich1 𝑥[𝑥𝑦]𝜑

Proof of Theorem nfich1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 df-ich 47322 . 2 ([𝑥𝑦]𝜑 ↔ ∀𝑥𝑦([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑𝜑))
2 nfa1 2152 . 2 𝑥𝑥𝑦([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑𝜑)
31, 2nfxfr 1851 1 𝑥[𝑥𝑦]𝜑
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1535  wnf 1781  [wsb 2064  [wich 47321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-10 2141
This theorem depends on definitions:  df-bi 207  df-or 847  df-ex 1778  df-nf 1782  df-ich 47322
This theorem is referenced by:  ichnfim  47340  ich2exprop  47347  ichreuopeq  47349
  Copyright terms: Public domain W3C validator