Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfich2 Structured version   Visualization version   GIF version

Theorem nfich2 47401
Description: The second interchangeable setvar variable is not free. (Contributed by AV, 21-Aug-2023.)
Assertion
Ref Expression
nfich2 𝑦[𝑥𝑦]𝜑

Proof of Theorem nfich2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 df-ich 47399 . 2 ([𝑥𝑦]𝜑 ↔ ∀𝑥𝑦([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑𝜑))
2 nfa2 2176 . 2 𝑦𝑥𝑦([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑𝜑)
31, 2nfxfr 1852 1 𝑦[𝑥𝑦]𝜑
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1537  wnf 1782  [wsb 2064  [wich 47398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-10 2141  ax-11 2157
This theorem depends on definitions:  df-bi 207  df-or 849  df-ex 1779  df-nf 1783  df-ich 47399
This theorem is referenced by:  ich2exprop  47424  ichreuopeq  47426
  Copyright terms: Public domain W3C validator