| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfa1 | Structured version Visualization version GIF version | ||
| Description: The setvar 𝑥 is not free in ∀𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) df-nf 1785 changed. (Revised by Wolf Lammen, 11-Sep-2021.) Remove dependency on ax-12 2180. (Revised by Wolf Lammen, 12-Oct-2021.) |
| Ref | Expression |
|---|---|
| nfa1 | ⊢ Ⅎ𝑥∀𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alex 1827 | . 2 ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
| 2 | nfe1 2153 | . . 3 ⊢ Ⅎ𝑥∃𝑥 ¬ 𝜑 | |
| 3 | 2 | nfn 1858 | . 2 ⊢ Ⅎ𝑥 ¬ ∃𝑥 ¬ 𝜑 |
| 4 | 1, 3 | nfxfr 1854 | 1 ⊢ Ⅎ𝑥∀𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∀wal 1539 ∃wex 1780 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-10 2144 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: nfna1 2155 nfia1 2156 nfnf1 2157 nfs1v 2159 nfa2 2179 sbalexOLD 2246 sbf2 2274 equs5av 2279 nf5 2284 hba1 2295 axc4i 2323 19.12 2328 exsb 2359 equs5aALT 2366 equs5eALT 2367 cbv1h 2405 dral1 2439 nfald2 2445 equs5a 2457 equs5e 2458 equs5 2460 axc14 2463 nfsb4t 2499 sbcom3 2506 nfmo1 2552 nfeu1 2583 moexexlem 2621 2eu6 2652 axi12 2701 nfaba1 2902 nfaba1OLD 2903 nfaba1g 2904 nfra1 3256 ceqsalgALT 3473 elrab3t 3646 csbie2t 3888 rexdifi 4100 sbcnestgfw 4371 sbcnestgf 4376 dfnfc2 4881 mpteq12f 5176 axrep2 5220 axrep3 5221 axrep4OLD 5224 alxfr 5345 axprlem4OLD 5367 axprlem5OLD 5368 copsex2t 5432 mosubopt 5450 fv3 6840 fvmptt 6949 fnoprabg 7469 pssnn 9078 fiint 9211 aceq1 10005 zorn2lem4 10387 zfcndrep 10502 mreexexd 17551 dvelimalcased 35082 dvelimexcased 35084 fineqvrep 35125 dfon2lem7 35822 bj-alalbial 36734 bj-exalbial 36735 bj-biexal1 36738 bj-bialal 36741 bj-cbv1hv 36829 ax11-pm 36865 bj-snsetex 36996 exlimim 37375 exellim 37377 difunieq 37407 fvineqsneq 37445 wl-nfimf1 37559 wl-nfae1 37560 wl-sb8t 37585 wl-sbnf1 37588 wl-2spsbbi 37598 wl-lem-moexsb 37601 wl-mo2tf 37604 wl-eutf 37606 wl-mo2t 37608 wl-mo3t 37609 wl-sb8eut 37611 wl-ax11-lem3 37620 sbali 38151 setindtr 43056 unielss 43250 ismnushort 44333 axc11next 44438 pm14.122b 44455 pm14.123b 44458 ax6e2ndeqVD 44940 e2ebindALT 44960 ax6e2ndeqALT 44962 modelaxreplem2 45011 modelaxreplem3 45012 permaxrep 45038 rexsb 47129 nfich1 47477 ichnfimlem 47493 ich2al 47497 pgind 49748 |
| Copyright terms: Public domain | W3C validator |