![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfa1 | Structured version Visualization version GIF version |
Description: The setvar 𝑥 is not free in ∀𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) df-nf 1787 changed. (Revised by Wolf Lammen, 11-Sep-2021.) Remove dependency on ax-12 2172. (Revised by Wolf Lammen, 12-Oct-2021.) |
Ref | Expression |
---|---|
nfa1 | ⊢ Ⅎ𝑥∀𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alex 1829 | . 2 ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
2 | nfe1 2148 | . . 3 ⊢ Ⅎ𝑥∃𝑥 ¬ 𝜑 | |
3 | 2 | nfn 1861 | . 2 ⊢ Ⅎ𝑥 ¬ ∃𝑥 ¬ 𝜑 |
4 | 1, 3 | nfxfr 1856 | 1 ⊢ Ⅎ𝑥∀𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1540 ∃wex 1782 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-10 2138 |
This theorem depends on definitions: df-bi 206 df-or 847 df-ex 1783 df-nf 1787 |
This theorem is referenced by: nfna1 2150 nfia1 2151 nfnf1 2152 nfs1v 2154 nfa2 2171 sbalex 2236 sbf2 2264 equs5av 2271 nf5 2279 hba1 2290 axc4i 2316 19.12 2321 exsb 2356 equs5aALT 2364 equs5eALT 2365 dral1vOLD 2368 cbv1h 2405 dral1 2439 nfald2 2445 equs5a 2457 equs5e 2458 equs5 2460 axc14 2463 nfsb4t 2499 sbcom3 2506 nfmo1 2552 nfeu1 2583 moexexlem 2623 2eu6 2653 axi12 2702 nfaba1 2912 nfaba1g 2913 nfabdwOLD 2928 nfra1 3282 nfra2wOLD 3298 ceqsalgALT 3509 elrab3t 3683 sbcbi2OLD 3841 csbie2t 3935 rexdifi 4146 sbcnestgfw 4419 sbcnestgf 4424 dfnfc2 4934 mpteq12f 5237 axrep2 5289 axrep3 5290 axrep4 5291 alxfr 5406 axprlem4 5425 axprlem5 5426 copsex2t 5493 mosubopt 5511 fv3 6910 fvmptt 7019 fnoprabg 7531 pssnn 9168 pssnnOLD 9265 fiint 9324 aceq1 10112 zorn2lem4 10494 zfcndrep 10609 mreexexd 17592 fineqvrep 34095 dfon2lem7 34761 bj-alalbial 35579 bj-exalbial 35580 bj-biexal1 35583 bj-bialal 35586 bj-cbv1hv 35674 ax11-pm 35710 bj-snsetex 35844 exlimim 36223 exellim 36225 difunieq 36255 fvineqsneq 36293 wl-nfimf1 36395 wl-nfae1 36396 wl-sb8t 36417 wl-sbnf1 36420 wl-2spsbbi 36430 wl-lem-moexsb 36433 wl-mo2tf 36436 wl-eutf 36438 wl-mo2t 36440 wl-mo3t 36441 wl-sb8eut 36442 wl-ax11-lem3 36449 sbali 36980 setindtr 41763 unielss 41967 ismnushort 43060 axc11next 43165 pm14.122b 43182 pm14.123b 43185 eubiOLD 43195 ax6e2ndeqVD 43670 e2ebindALT 43690 ax6e2ndeqALT 43692 rexsb 45807 nfich1 46115 ichnfimlem 46131 ich2al 46135 pgind 47762 |
Copyright terms: Public domain | W3C validator |