| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfa1 | Structured version Visualization version GIF version | ||
| Description: The setvar 𝑥 is not free in ∀𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) df-nf 1785 changed. (Revised by Wolf Lammen, 11-Sep-2021.) Remove dependency on ax-12 2182. (Revised by Wolf Lammen, 12-Oct-2021.) |
| Ref | Expression |
|---|---|
| nfa1 | ⊢ Ⅎ𝑥∀𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alex 1827 | . 2 ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
| 2 | nfe1 2155 | . . 3 ⊢ Ⅎ𝑥∃𝑥 ¬ 𝜑 | |
| 3 | 2 | nfn 1858 | . 2 ⊢ Ⅎ𝑥 ¬ ∃𝑥 ¬ 𝜑 |
| 4 | 1, 3 | nfxfr 1854 | 1 ⊢ Ⅎ𝑥∀𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∀wal 1539 ∃wex 1780 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-10 2146 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: nfna1 2157 nfia1 2158 nfnf1 2159 nfs1v 2161 nfa2 2181 sbalexOLD 2248 sbf2 2276 equs5av 2281 nf5 2286 hba1 2297 axc4i 2325 19.12 2330 exsb 2361 equs5aALT 2368 equs5eALT 2369 cbv1h 2407 dral1 2441 nfald2 2447 equs5a 2459 equs5e 2460 equs5 2462 axc14 2465 nfsb4t 2501 sbcom3 2508 nfmo1 2554 nfeu1 2585 moexexlem 2623 2eu6 2654 axi12 2703 nfaba1 2903 nfaba1OLD 2904 nfaba1g 2905 nfra1 3257 ceqsalgALT 3474 elrab3t 3642 csbie2t 3884 rexdifi 4099 sbcnestgfw 4370 sbcnestgf 4375 dfnfc2 4880 mpteq12f 5178 axrep2 5222 axrep3 5223 axrep4OLD 5226 alxfr 5347 axprlem4OLD 5369 axprlem5OLD 5370 copsex2t 5435 mosubopt 5453 fv3 6846 fvmptt 6955 fnoprabg 7475 pssnn 9085 fiint 9218 aceq1 10015 zorn2lem4 10397 zfcndrep 10512 mreexexd 17556 dvelimalcased 35108 dvelimexcased 35110 fineqvrep 35158 dfon2lem7 35852 bj-alalbial 36766 bj-exalbial 36767 bj-biexal1 36770 bj-bialal 36773 bj-cbv1hv 36861 ax11-pm 36897 bj-snsetex 37028 exlimim 37407 exellim 37409 difunieq 37439 fvineqsneq 37477 wl-nfimf1 37591 wl-nfae1 37592 wl-sb8t 37617 wl-sbnf1 37620 wl-2spsbbi 37630 wl-lem-moexsb 37633 wl-mo2tf 37636 wl-eutf 37638 wl-mo2t 37640 wl-mo3t 37641 wl-sb8eut 37643 sbali 38172 setindtr 43141 unielss 43335 ismnushort 44418 axc11next 44523 pm14.122b 44540 pm14.123b 44543 ax6e2ndeqVD 45025 e2ebindALT 45045 ax6e2ndeqALT 45047 modelaxreplem2 45096 modelaxreplem3 45097 permaxrep 45123 rexsb 47223 nfich1 47571 ichnfimlem 47587 ich2al 47591 pgind 49842 |
| Copyright terms: Public domain | W3C validator |