| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfxfr | Structured version Visualization version GIF version | ||
| Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| nfxfr.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| nfxfr | ⊢ Ⅎ𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfxfr.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | nfbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | nfbii 1852 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ Ⅎ𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfnan 1900 nf3an 1901 nfor 1904 nf3or 1905 nfa1 2152 nfnf1 2155 nfs1v 2157 nfa2 2177 nfan1 2201 nfs1f 2275 nfex 2323 nfnf 2325 nfmo1 2550 nfeu1 2581 nfeu1ALT 2582 nfsab1 2715 nfnfc1 2894 nfaba1 2899 nfnfc 2904 nfne 3026 nfnel 3037 nfra1 3259 nfre1 3260 nfra2w 3272 r19.12 3285 nfrmo1 3380 nfreu1 3381 nfrmow 3382 nfreuw 3383 nfrmo 3400 nfss 3936 nfdif 4088 nfun 4129 nfin 4183 nfiu1 4987 nfdisjw 5081 nfdisj 5082 nfdisj1 5083 nfpo 5545 nfso 5546 nffr 5604 nfse 5605 nfwe 5606 nfrel 5734 sb8iota 6463 nffun 6523 nffn 6599 nff 6666 nff1 6736 nffo 6753 nff1o 6780 nfiso 7279 tz7.49 8390 nfixpw 8866 nfixp 8867 bnj919 34751 bnj1379 34814 bnj571 34890 bnj607 34900 bnj873 34908 bnj981 34934 bnj1039 34955 bnj1128 34974 bnj1388 35017 bnj1398 35018 bnj1417 35025 bnj1444 35027 bnj1445 35028 bnj1446 35029 bnj1449 35032 bnj1467 35038 bnj1489 35040 bnj1312 35042 bnj1518 35048 bnj1525 35053 wl-nfae1 37509 wl-ax11-lem4 37570 ptrecube 37608 nfa1w 42657 nfrelp 44933 nfdfat 47122 nfich1 47442 nfich2 47443 ichnfimlem 47458 ich2ex 47463 |
| Copyright terms: Public domain | W3C validator |