![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfxfr | Structured version Visualization version GIF version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
nfxfr.2 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
nfxfr | ⊢ Ⅎ𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfxfr.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | nfbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | nfbii 1855 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
4 | 1, 3 | mpbir 230 | 1 ⊢ Ⅎ𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-nf 1787 |
This theorem is referenced by: nfnan 1904 nf3an 1905 nfor 1908 nf3or 1909 nfa1 2149 nfnf1 2152 nfs1v 2154 nfa2 2171 nfan1 2194 nfs1f 2267 nfex 2318 nfnf 2320 nfsbvOLD 2325 nfmo1 2552 nfeu1 2583 nfeu1ALT 2584 nfsab1 2718 nfnfc1 2907 nfnfc 2916 nfabdwOLD 2928 nfne 3044 nfnel 3055 nfra1 3282 nfre1 3283 nfra2w 3297 nfra2wOLD 3298 r19.12 3312 r19.12OLD 3313 nfrmo1 3408 nfreu1 3409 nfrmow 3410 nfreuw 3411 nfrmowOLD 3424 nfrmo 3431 nfss 3975 nfdisjw 5126 nfdisj 5127 nfdisj1 5128 nfpo 5594 nfso 5595 nffr 5651 nfse 5652 nfwe 5653 nfrel 5780 sb8iota 6508 nffun 6572 nffn 6649 nff 6714 nff1 6786 nffo 6805 nff1o 6832 nfiso 7319 tz7.49 8445 nfixpw 8910 nfixp 8911 bnj919 33778 bnj1379 33841 bnj571 33917 bnj607 33927 bnj873 33935 bnj981 33961 bnj1039 33982 bnj1128 34001 bnj1388 34044 bnj1398 34045 bnj1417 34052 bnj1444 34054 bnj1445 34055 bnj1446 34056 bnj1449 34059 bnj1467 34065 bnj1489 34067 bnj1312 34069 bnj1518 34075 bnj1525 34080 wl-nfae1 36396 wl-ax11-lem4 36450 ptrecube 36488 nfdfat 45835 nfich1 46115 nfich2 46116 ichnfimlem 46131 ich2ex 46136 |
Copyright terms: Public domain | W3C validator |