![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfxfr | Structured version Visualization version GIF version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
nfxfr.2 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
nfxfr | ⊢ Ⅎ𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfxfr.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | nfbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | nfbii 1848 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
4 | 1, 3 | mpbir 231 | 1 ⊢ Ⅎ𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 Ⅎwnf 1779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 |
This theorem depends on definitions: df-bi 207 df-ex 1776 df-nf 1780 |
This theorem is referenced by: nfnan 1897 nf3an 1898 nfor 1901 nf3or 1902 nfa1 2148 nfnf1 2151 nfs1v 2153 nfa2 2173 nfan1 2197 nfs1f 2272 nfex 2322 nfnf 2324 nfsbvOLD 2329 nfmo1 2554 nfeu1 2585 nfeu1ALT 2586 nfsab1 2719 nfnfc1 2905 nfaba1 2910 nfnfc 2915 nfne 3040 nfnel 3051 nfra1 3281 nfre1 3282 nfra2w 3296 nfra2wOLD 3297 r19.12 3311 r19.12OLD 3312 nfrmo1 3408 nfreu1 3409 nfrmow 3410 nfreuw 3411 nfrmowOLD 3423 nfrmo 3430 nfss 3987 nfdif 4138 nfun 4179 nfin 4231 nfiu1 5031 nfdisjw 5126 nfdisj 5127 nfdisj1 5128 nfpo 5602 nfso 5603 nffr 5661 nfse 5662 nfwe 5663 nfrel 5791 sb8iota 6526 nffun 6590 nffn 6667 nff 6732 nff1 6802 nffo 6819 nff1o 6846 nfiso 7341 tz7.49 8483 nfixpw 8954 nfixp 8955 bnj919 34759 bnj1379 34822 bnj571 34898 bnj607 34908 bnj873 34916 bnj981 34942 bnj1039 34963 bnj1128 34982 bnj1388 35025 bnj1398 35026 bnj1417 35033 bnj1444 35035 bnj1445 35036 bnj1446 35037 bnj1449 35040 bnj1467 35046 bnj1489 35048 bnj1312 35050 bnj1518 35056 bnj1525 35061 wl-nfae1 37507 wl-ax11-lem4 37568 ptrecube 37606 nfa1w 42661 nfdfat 47076 nfich1 47371 nfich2 47372 ichnfimlem 47387 ich2ex 47392 |
Copyright terms: Public domain | W3C validator |