| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfxfr | Structured version Visualization version GIF version | ||
| Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| nfxfr.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| nfxfr | ⊢ Ⅎ𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfxfr.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | nfbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | nfbii 1852 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ Ⅎ𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfnan 1900 nf3an 1901 nfor 1904 nf3or 1905 nfa1 2151 nfnf1 2154 nfs1v 2156 nfa2 2176 nfan1 2200 nfs1f 2275 nfex 2324 nfnf 2326 nfmo1 2556 nfeu1 2587 nfeu1ALT 2588 nfsab1 2721 nfnfc1 2901 nfaba1 2906 nfnfc 2911 nfne 3033 nfnel 3044 nfra1 3266 nfre1 3267 nfra2w 3280 r19.12 3294 nfrmo1 3390 nfreu1 3391 nfrmow 3392 nfreuw 3393 nfrmowOLD 3406 nfrmo 3413 nfss 3951 nfdif 4104 nfun 4145 nfin 4199 nfiu1 5003 nfdisjw 5098 nfdisj 5099 nfdisj1 5100 nfpo 5567 nfso 5568 nffr 5627 nfse 5628 nfwe 5629 nfrel 5758 sb8iota 6495 nffun 6559 nffn 6637 nff 6702 nff1 6772 nffo 6789 nff1o 6816 nfiso 7315 tz7.49 8459 nfixpw 8930 nfixp 8931 bnj919 34798 bnj1379 34861 bnj571 34937 bnj607 34947 bnj873 34955 bnj981 34981 bnj1039 35002 bnj1128 35021 bnj1388 35064 bnj1398 35065 bnj1417 35072 bnj1444 35074 bnj1445 35075 bnj1446 35076 bnj1449 35079 bnj1467 35085 bnj1489 35087 bnj1312 35089 bnj1518 35095 bnj1525 35100 wl-nfae1 37545 wl-ax11-lem4 37606 ptrecube 37644 nfa1w 42698 nfrelp 44974 nfdfat 47156 nfich1 47461 nfich2 47462 ichnfimlem 47477 ich2ex 47482 |
| Copyright terms: Public domain | W3C validator |