![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfxfr | Structured version Visualization version GIF version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
nfxfr.2 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
nfxfr | ⊢ Ⅎ𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfxfr.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | nfbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | nfbii 1854 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
4 | 1, 3 | mpbir 230 | 1 ⊢ Ⅎ𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 Ⅎwnf 1785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 |
This theorem depends on definitions: df-bi 206 df-ex 1782 df-nf 1786 |
This theorem is referenced by: nfnan 1903 nf3an 1904 nfor 1907 nf3or 1908 nfa1 2148 nfnf1 2151 nfs1v 2153 nfa2 2170 nfan1 2193 nfs1f 2266 nfex 2317 nfnf 2319 nfsbvOLD 2324 nfmo1 2551 nfeu1 2582 nfeu1ALT 2583 nfsab1 2717 nfnfc1 2906 nfnfc 2915 nfabdwOLD 2927 nfne 3043 nfnel 3054 nfra1 3281 nfre1 3282 nfra2w 3296 nfra2wOLD 3297 r19.12 3311 r19.12OLD 3312 nfrmo1 3407 nfreu1 3408 nfrmow 3409 nfreuw 3410 nfrmowOLD 3423 nfrmo 3430 nfss 3974 nfdisjw 5125 nfdisj 5126 nfdisj1 5127 nfpo 5593 nfso 5594 nffr 5650 nfse 5651 nfwe 5652 nfrel 5779 sb8iota 6507 nffun 6571 nffn 6648 nff 6713 nff1 6785 nffo 6804 nff1o 6831 nfiso 7318 tz7.49 8444 nfixpw 8909 nfixp 8910 bnj919 33773 bnj1379 33836 bnj571 33912 bnj607 33922 bnj873 33930 bnj981 33956 bnj1039 33977 bnj1128 33996 bnj1388 34039 bnj1398 34040 bnj1417 34047 bnj1444 34049 bnj1445 34050 bnj1446 34051 bnj1449 34054 bnj1467 34060 bnj1489 34062 bnj1312 34064 bnj1518 34070 bnj1525 34075 wl-nfae1 36391 wl-ax11-lem4 36445 ptrecube 36483 nfdfat 45825 nfich1 46105 nfich2 46106 ichnfimlem 46121 ich2ex 46126 |
Copyright terms: Public domain | W3C validator |