| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfxfr | Structured version Visualization version GIF version | ||
| Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| nfxfr.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| nfxfr | ⊢ Ⅎ𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfxfr.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | nfbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | nfbii 1852 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ Ⅎ𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfnan 1900 nf3an 1901 nfor 1904 nf3or 1905 nfa1 2152 nfnf1 2155 nfs1v 2157 nfa2 2177 nfan1 2201 nfs1f 2275 nfex 2323 nfnf 2325 nfmo1 2551 nfeu1 2582 nfeu1ALT 2583 nfsab1 2716 nfnfc1 2895 nfaba1 2900 nfnfc 2905 nfne 3027 nfnel 3038 nfra1 3262 nfre1 3263 nfra2w 3276 r19.12 3290 nfrmo1 3385 nfreu1 3386 nfrmow 3387 nfreuw 3388 nfrmo 3406 nfss 3942 nfdif 4095 nfun 4136 nfin 4190 nfiu1 4994 nfdisjw 5089 nfdisj 5090 nfdisj1 5091 nfpo 5555 nfso 5556 nffr 5614 nfse 5615 nfwe 5616 nfrel 5745 sb8iota 6478 nffun 6542 nffn 6620 nff 6687 nff1 6757 nffo 6774 nff1o 6801 nfiso 7300 tz7.49 8416 nfixpw 8892 nfixp 8893 bnj919 34764 bnj1379 34827 bnj571 34903 bnj607 34913 bnj873 34921 bnj981 34947 bnj1039 34968 bnj1128 34987 bnj1388 35030 bnj1398 35031 bnj1417 35038 bnj1444 35040 bnj1445 35041 bnj1446 35042 bnj1449 35045 bnj1467 35051 bnj1489 35053 bnj1312 35055 bnj1518 35061 bnj1525 35066 wl-nfae1 37522 wl-ax11-lem4 37583 ptrecube 37621 nfa1w 42670 nfrelp 44946 nfdfat 47132 nfich1 47452 nfich2 47453 ichnfimlem 47468 ich2ex 47473 |
| Copyright terms: Public domain | W3C validator |