| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfxfr | Structured version Visualization version GIF version | ||
| Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| nfxfr.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| nfxfr | ⊢ Ⅎ𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfxfr.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | nfbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | nfbii 1852 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ Ⅎ𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfnan 1900 nf3an 1901 nfor 1904 nf3or 1905 nfa1 2152 nfnf1 2155 nfs1v 2157 nfa2 2177 nfan1 2201 nfs1f 2275 nfex 2323 nfnf 2325 nfmo1 2550 nfeu1 2581 nfeu1ALT 2582 nfsab1 2715 nfnfc1 2894 nfaba1 2899 nfnfc 2904 nfne 3026 nfnel 3037 nfra1 3261 nfre1 3262 nfra2w 3274 r19.12 3288 nfrmo1 3383 nfreu1 3384 nfrmow 3385 nfreuw 3386 nfrmo 3403 nfss 3939 nfdif 4092 nfun 4133 nfin 4187 nfiu1 4991 nfdisjw 5086 nfdisj 5087 nfdisj1 5088 nfpo 5552 nfso 5553 nffr 5611 nfse 5612 nfwe 5613 nfrel 5742 sb8iota 6475 nffun 6539 nffn 6617 nff 6684 nff1 6754 nffo 6771 nff1o 6798 nfiso 7297 tz7.49 8413 nfixpw 8889 nfixp 8890 bnj919 34757 bnj1379 34820 bnj571 34896 bnj607 34906 bnj873 34914 bnj981 34940 bnj1039 34961 bnj1128 34980 bnj1388 35023 bnj1398 35024 bnj1417 35031 bnj1444 35033 bnj1445 35034 bnj1446 35035 bnj1449 35038 bnj1467 35044 bnj1489 35046 bnj1312 35048 bnj1518 35054 bnj1525 35059 wl-nfae1 37515 wl-ax11-lem4 37576 ptrecube 37614 nfa1w 42663 nfrelp 44939 nfdfat 47128 nfich1 47448 nfich2 47449 ichnfimlem 47464 ich2ex 47469 |
| Copyright terms: Public domain | W3C validator |