| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfxfr | Structured version Visualization version GIF version | ||
| Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| nfxfr.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| nfxfr | ⊢ Ⅎ𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfxfr.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | nfbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | nfbii 1853 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ Ⅎ𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: nfnan 1901 nf3an 1902 nfor 1905 nf3or 1906 nfa1 2154 nfnf1 2157 nfs1v 2159 nfa2 2179 nfan1 2203 nfs1f 2277 nfex 2325 nfnf 2327 nfmo1 2552 nfeu1 2583 nfeu1ALT 2584 nfsab1 2717 nfnfc1 2897 nfaba1 2902 nfnfc 2907 nfne 3029 nfnel 3040 nfra1 3256 nfre1 3257 nfra2w 3268 r19.12 3281 nfrmo1 3373 nfreu1 3374 nfrmow 3375 nfreuw 3376 nfrmo 3393 nfss 3922 nfdif 4076 nfun 4117 nfin 4171 nfiu1 4975 nfdisjw 5068 nfdisj 5069 nfdisj1 5070 nfpo 5528 nfso 5529 nffr 5587 nfse 5588 nfwe 5589 nfrel 5719 sb8iota 6448 nffun 6504 nffn 6580 nff 6647 nff1 6717 nffo 6734 nff1o 6761 nfiso 7256 tz7.49 8364 nfixpw 8840 nfixp 8841 bnj919 34779 bnj1379 34842 bnj571 34918 bnj607 34928 bnj873 34936 bnj981 34962 bnj1039 34983 bnj1128 35002 bnj1388 35045 bnj1398 35046 bnj1417 35053 bnj1444 35055 bnj1445 35056 bnj1446 35057 bnj1449 35060 bnj1467 35066 bnj1489 35068 bnj1312 35070 bnj1518 35076 bnj1525 35081 wl-nfae1 37571 ptrecube 37659 nfa1w 42767 nfrelp 45041 nfdfat 47226 nfich1 47546 nfich2 47547 ichnfimlem 47562 ich2ex 47567 |
| Copyright terms: Public domain | W3C validator |