![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfxfr | Structured version Visualization version GIF version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
nfxfr.2 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
nfxfr | ⊢ Ⅎ𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfxfr.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | nfbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | nfbii 1850 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
4 | 1, 3 | mpbir 231 | 1 ⊢ Ⅎ𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-ex 1778 df-nf 1782 |
This theorem is referenced by: nfnan 1899 nf3an 1900 nfor 1903 nf3or 1904 nfa1 2152 nfnf1 2155 nfs1v 2157 nfa2 2177 nfan1 2201 nfs1f 2276 nfex 2328 nfnf 2330 nfsbvOLD 2335 nfmo1 2560 nfeu1 2591 nfeu1ALT 2592 nfsab1 2725 nfnfc1 2911 nfaba1 2916 nfnfc 2921 nfabdwOLD 2933 nfne 3049 nfnel 3060 nfra1 3290 nfre1 3291 nfra2w 3305 nfra2wOLD 3306 r19.12 3320 r19.12OLD 3321 nfrmo1 3419 nfreu1 3420 nfrmow 3421 nfreuw 3422 nfrmowOLD 3434 nfrmo 3441 nfss 4001 nfdif 4152 nfun 4193 nfin 4245 nfiu1 5050 nfdisjw 5145 nfdisj 5146 nfdisj1 5147 nfpo 5613 nfso 5614 nffr 5673 nfse 5674 nfwe 5675 nfrel 5803 sb8iota 6537 nffun 6601 nffn 6678 nff 6743 nff1 6815 nffo 6833 nff1o 6860 nfiso 7358 tz7.49 8501 nfixpw 8974 nfixp 8975 bnj919 34743 bnj1379 34806 bnj571 34882 bnj607 34892 bnj873 34900 bnj981 34926 bnj1039 34947 bnj1128 34966 bnj1388 35009 bnj1398 35010 bnj1417 35017 bnj1444 35019 bnj1445 35020 bnj1446 35021 bnj1449 35024 bnj1467 35030 bnj1489 35032 bnj1312 35034 bnj1518 35040 bnj1525 35045 wl-nfae1 37481 wl-ax11-lem4 37542 ptrecube 37580 nfa1w 42630 nfdfat 47042 nfich1 47321 nfich2 47322 ichnfimlem 47337 ich2ex 47342 |
Copyright terms: Public domain | W3C validator |