| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfxfr | Structured version Visualization version GIF version | ||
| Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| nfxfr.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| nfxfr | ⊢ Ⅎ𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfxfr.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | nfbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | nfbii 1852 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ Ⅎ𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfnan 1900 nf3an 1901 nfor 1904 nf3or 1905 nfa1 2152 nfnf1 2155 nfs1v 2157 nfa2 2177 nfan1 2201 nfs1f 2275 nfex 2323 nfnf 2325 nfmo1 2550 nfeu1 2581 nfeu1ALT 2582 nfsab1 2715 nfnfc1 2894 nfaba1 2899 nfnfc 2904 nfne 3026 nfnel 3037 nfra1 3253 nfre1 3254 nfra2w 3265 r19.12 3278 nfrmo1 3372 nfreu1 3373 nfrmow 3374 nfreuw 3375 nfrmo 3392 nfss 3928 nfdif 4080 nfun 4121 nfin 4175 nfiu1 4977 nfdisjw 5071 nfdisj 5072 nfdisj1 5073 nfpo 5533 nfso 5534 nffr 5592 nfse 5593 nfwe 5594 nfrel 5723 sb8iota 6449 nffun 6505 nffn 6581 nff 6648 nff1 6718 nffo 6735 nff1o 6762 nfiso 7259 tz7.49 8367 nfixpw 8843 nfixp 8844 bnj919 34750 bnj1379 34813 bnj571 34889 bnj607 34899 bnj873 34907 bnj981 34933 bnj1039 34954 bnj1128 34973 bnj1388 35016 bnj1398 35017 bnj1417 35024 bnj1444 35026 bnj1445 35027 bnj1446 35028 bnj1449 35031 bnj1467 35037 bnj1489 35039 bnj1312 35041 bnj1518 35047 bnj1525 35052 wl-nfae1 37521 wl-ax11-lem4 37582 ptrecube 37620 nfa1w 42668 nfrelp 44943 nfdfat 47131 nfich1 47451 nfich2 47452 ichnfimlem 47467 ich2ex 47472 |
| Copyright terms: Public domain | W3C validator |