Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfxfr | Structured version Visualization version GIF version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
nfxfr.2 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
nfxfr | ⊢ Ⅎ𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfxfr.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | nfbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | nfbii 1855 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
4 | 1, 3 | mpbir 230 | 1 ⊢ Ⅎ𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-nf 1787 |
This theorem is referenced by: nfnan 1904 nf3an 1905 nfor 1908 nf3or 1909 nfa1 2149 nfnf1 2152 nfs1v 2154 nfa2 2171 nfan1 2194 nfs1f 2268 nfex 2319 nfnf 2321 nfsbvOLD 2326 nfmo1 2558 nfeu1 2589 nfeu1ALT 2590 nfsab1 2724 nfnfc1 2911 nfnfc 2920 nfabdwOLD 2932 nfne 3046 nfnel 3057 nfra1 3145 nfra2w 3155 nfra2wOLD 3156 nfre1 3240 r19.12 3258 r19.12OLD 3259 nfreu1 3301 nfrmo1 3302 nfrmow 3305 nfreuw 3306 nfrmowOLD 3308 nfrmo 3310 nfss 3914 nfdisjw 5052 nfdisj 5053 nfdisj1 5054 nfpo 5509 nfso 5510 nffr 5564 nfse 5565 nfwe 5566 nfrel 5691 sb8iota 6407 nffun 6464 nffn 6541 nff 6605 nff1 6677 nffo 6696 nff1o 6723 nfiso 7202 tz7.49 8285 nfixpw 8713 nfixp 8714 bnj919 32756 bnj1379 32819 bnj571 32895 bnj607 32905 bnj873 32913 bnj981 32939 bnj1039 32960 bnj1128 32979 bnj1388 33022 bnj1398 33023 bnj1417 33030 bnj1444 33032 bnj1445 33033 bnj1446 33034 bnj1449 33037 bnj1467 33043 bnj1489 33045 bnj1312 33047 bnj1518 33053 bnj1525 33058 wl-nfae1 35695 wl-ax11-lem4 35748 ptrecube 35786 nfdfat 44630 nfich1 44910 nfich2 44911 ichnfimlem 44926 ich2ex 44931 |
Copyright terms: Public domain | W3C validator |