Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfxfr | Structured version Visualization version GIF version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
nfxfr.2 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
nfxfr | ⊢ Ⅎ𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfxfr.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | nfbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | nfbii 1855 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
4 | 1, 3 | mpbir 230 | 1 ⊢ Ⅎ𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-nf 1788 |
This theorem is referenced by: nfnan 1904 nf3an 1905 nfor 1908 nf3or 1909 nfa1 2150 nfnf1 2153 nfs1v 2155 nfa2 2172 nfan1 2196 nfs1f 2270 nfex 2322 nfnf 2324 nfsbvOLD 2329 nfmo1 2557 nfeu1 2588 nfeu1ALT 2589 nfsab1 2723 nfnfc1 2909 nfnfc 2918 nfabdwOLD 2930 nfne 3044 nfnel 3055 nfra1 3142 nfra2w 3151 nfra2wOLD 3152 nfre1 3234 r19.12 3252 r19.12OLD 3253 nfreu1 3296 nfrmo1 3297 nfrmow 3301 nfrmo 3303 nfss 3909 nfdisjw 5047 nfdisj 5048 nfdisj1 5049 nfpo 5499 nfso 5500 nffr 5554 nfse 5555 nfwe 5556 nfrel 5680 sb8iota 6388 nffun 6441 nffn 6516 nff 6580 nff1 6652 nffo 6671 nff1o 6698 nfiso 7173 tz7.49 8246 nfixpw 8662 nfixp 8663 bnj919 32647 bnj1379 32710 bnj571 32786 bnj607 32796 bnj873 32804 bnj981 32830 bnj1039 32851 bnj1128 32870 bnj1388 32913 bnj1398 32914 bnj1417 32921 bnj1444 32923 bnj1445 32924 bnj1446 32925 bnj1449 32928 bnj1467 32934 bnj1489 32936 bnj1312 32938 bnj1518 32944 bnj1525 32949 wl-nfae1 35613 wl-ax11-lem4 35666 ptrecube 35704 nfdfat 44506 nfich1 44787 nfich2 44788 ichnfimlem 44803 ich2ex 44808 |
Copyright terms: Public domain | W3C validator |