Proof of Theorem wl-nfeqfb
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | nf5r 2194 | . . . . 5
⊢
(Ⅎ𝑥 𝑦 = 𝑧 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) | 
| 2 | 1 | imp 406 | . . . 4
⊢
((Ⅎ𝑥 𝑦 = 𝑧 ∧ 𝑦 = 𝑧) → ∀𝑥 𝑦 = 𝑧) | 
| 3 |  | wl-aleq 37536 | . . . . 5
⊢
(∀𝑥 𝑦 = 𝑧 ↔ (𝑦 = 𝑧 ∧ (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑧))) | 
| 4 | 3 | simprbi 496 | . . . 4
⊢
(∀𝑥 𝑦 = 𝑧 → (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑧)) | 
| 5 | 2, 4 | syl 17 | . . 3
⊢
((Ⅎ𝑥 𝑦 = 𝑧 ∧ 𝑦 = 𝑧) → (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑧)) | 
| 6 |  | nfnt 1856 | . . . . . 6
⊢
(Ⅎ𝑥 𝑦 = 𝑧 → Ⅎ𝑥 ¬ 𝑦 = 𝑧) | 
| 7 | 6 | nf5rd 2196 | . . . . 5
⊢
(Ⅎ𝑥 𝑦 = 𝑧 → (¬ 𝑦 = 𝑧 → ∀𝑥 ¬ 𝑦 = 𝑧)) | 
| 8 | 7 | imp 406 | . . . 4
⊢
((Ⅎ𝑥 𝑦 = 𝑧 ∧ ¬ 𝑦 = 𝑧) → ∀𝑥 ¬ 𝑦 = 𝑧) | 
| 9 |  | alnex 1781 | . . . . . 6
⊢
(∀𝑥 ¬
𝑦 = 𝑧 ↔ ¬ ∃𝑥 𝑦 = 𝑧) | 
| 10 |  | wl-exeq 37535 | . . . . . 6
⊢
(∃𝑥 𝑦 = 𝑧 ↔ (𝑦 = 𝑧 ∨ ∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥 𝑥 = 𝑧)) | 
| 11 | 9, 10 | xchbinx 334 | . . . . 5
⊢
(∀𝑥 ¬
𝑦 = 𝑧 ↔ ¬ (𝑦 = 𝑧 ∨ ∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥 𝑥 = 𝑧)) | 
| 12 |  | 3ioran 1106 | . . . . 5
⊢ (¬
(𝑦 = 𝑧 ∨ ∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥 𝑥 = 𝑧) ↔ (¬ 𝑦 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧)) | 
| 13 | 11, 12 | sylbb 219 | . . . 4
⊢
(∀𝑥 ¬
𝑦 = 𝑧 → (¬ 𝑦 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧)) | 
| 14 |  | 3simpc 1151 | . . . 4
⊢ ((¬
𝑦 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧)) | 
| 15 |  | pm5.21 825 | . . . 4
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑧)) | 
| 16 | 8, 13, 14, 15 | 4syl 19 | . . 3
⊢
((Ⅎ𝑥 𝑦 = 𝑧 ∧ ¬ 𝑦 = 𝑧) → (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑧)) | 
| 17 | 5, 16 | pm2.61dan 813 | . 2
⊢
(Ⅎ𝑥 𝑦 = 𝑧 → (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑧)) | 
| 18 |  | ax7 2015 | . . . . 5
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | 
| 19 | 18 | al2imi 1815 | . . . 4
⊢
(∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) | 
| 20 |  | nftht 1792 | . . . 4
⊢
(∀𝑥 𝑦 = 𝑧 → Ⅎ𝑥 𝑦 = 𝑧) | 
| 21 | 19, 20 | syl6 35 | . . 3
⊢
(∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑧 → Ⅎ𝑥 𝑦 = 𝑧)) | 
| 22 |  | nfeqf 2386 | . . . 4
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥 𝑦 = 𝑧) | 
| 23 | 22 | ex 412 | . . 3
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑧 → Ⅎ𝑥 𝑦 = 𝑧)) | 
| 24 | 21, 23 | bija 380 | . 2
⊢
((∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥 𝑦 = 𝑧) | 
| 25 | 17, 24 | impbii 209 | 1
⊢
(Ⅎ𝑥 𝑦 = 𝑧 ↔ (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑧)) |