MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfth Structured version   Visualization version   GIF version

Theorem nfth 1805
Description: No variable is (effectively) free in a theorem. (Contributed by Mario Carneiro, 11-Aug-2016.) df-nf 1788 changed. (Revised by Wolf Lammen, 12-Sep-2021.)
Hypothesis
Ref Expression
nfth.1 𝜑
Assertion
Ref Expression
nfth 𝑥𝜑

Proof of Theorem nfth
StepHypRef Expression
1 nftht 1796 . 2 (∀𝑥𝜑 → Ⅎ𝑥𝜑)
2 nfth.1 . 2 𝜑
31, 2mpg 1801 1 𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  wnf 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799
This theorem depends on definitions:  df-bi 206  df-nf 1788
This theorem is referenced by:  nftru  1808  nfequid  2017  rabeqiOLD  3407  sbc2ieOLD  3796  iunxdif3  5020  infcvgaux1i  15497  exnel  33684  ellimcabssub0  43048
  Copyright terms: Public domain W3C validator