|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nfth | Structured version Visualization version GIF version | ||
| Description: No variable is (effectively) free in a theorem. (Contributed by Mario Carneiro, 11-Aug-2016.) df-nf 1783 changed. (Revised by Wolf Lammen, 12-Sep-2021.) | 
| Ref | Expression | 
|---|---|
| nfth.1 | ⊢ 𝜑 | 
| Ref | Expression | 
|---|---|
| nfth | ⊢ Ⅎ𝑥𝜑 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nftht 1791 | . 2 ⊢ (∀𝑥𝜑 → Ⅎ𝑥𝜑) | |
| 2 | nfth.1 | . 2 ⊢ 𝜑 | |
| 3 | 1, 2 | mpg 1796 | 1 ⊢ Ⅎ𝑥𝜑 | 
| Colors of variables: wff setvar class | 
| Syntax hints: Ⅎwnf 1782 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 | 
| This theorem depends on definitions: df-bi 207 df-nf 1783 | 
| This theorem is referenced by: nftru 1803 nfequid 2011 iunxdif3 5094 infcvgaux1i 15894 exnel 35804 ellimcabssub0 45637 | 
| Copyright terms: Public domain | W3C validator |