MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfd Structured version   Visualization version   GIF version

Theorem nfd 1793
Description: Deduce that 𝑥 is not free in 𝜓 in a context. (Contributed by Wolf Lammen, 16-Sep-2021.)
Hypothesis
Ref Expression
nfd.1 (𝜑 → (∃𝑥𝜓 → ∀𝑥𝜓))
Assertion
Ref Expression
nfd (𝜑 → Ⅎ𝑥𝜓)

Proof of Theorem nfd
StepHypRef Expression
1 nfd.1 . 2 (𝜑 → (∃𝑥𝜓 → ∀𝑥𝜓))
2 df-nf 1787 . 2 (Ⅎ𝑥𝜓 ↔ (∃𝑥𝜓 → ∀𝑥𝜓))
31, 2sylibr 233 1 (𝜑 → Ⅎ𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wex 1782  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-nf 1787
This theorem is referenced by:  nftht  1795  nfntht  1796  nfimd  1897  nf5-1  2141  axc16nf  2255  nfald  2322  nfeqf2  2377  bj-nfald  35308
  Copyright terms: Public domain W3C validator