| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfd | Structured version Visualization version GIF version | ||
| Description: Deduce that 𝑥 is not free in 𝜓 in a context. (Contributed by Wolf Lammen, 16-Sep-2021.) |
| Ref | Expression |
|---|---|
| nfd.1 | ⊢ (𝜑 → (∃𝑥𝜓 → ∀𝑥𝜓)) |
| Ref | Expression |
|---|---|
| nfd | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfd.1 | . 2 ⊢ (𝜑 → (∃𝑥𝜓 → ∀𝑥𝜓)) | |
| 2 | df-nf 1784 | . 2 ⊢ (Ⅎ𝑥𝜓 ↔ (∃𝑥𝜓 → ∀𝑥𝜓)) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-nf 1784 |
| This theorem is referenced by: nftht 1792 nfntht 1793 nfimd 1894 nf5-1 2145 axc16nf 2263 nfald 2328 nfeqf2 2382 bj-nfald 37138 |
| Copyright terms: Public domain | W3C validator |