| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfrd | Structured version Visualization version GIF version | ||
| Description: Consequence of the definition of not-free in a context. (Contributed by Wolf Lammen, 15-Oct-2021.) |
| Ref | Expression |
|---|---|
| nfrd.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfrd | ⊢ (𝜑 → (∃𝑥𝜓 → ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfrd.1 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 2 | df-nf 1784 | . 2 ⊢ (Ⅎ𝑥𝜓 ↔ (∃𝑥𝜓 → ∀𝑥𝜓)) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → ∀𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-nf 1784 |
| This theorem is referenced by: 19.38a 1840 19.38b 1841 nfimd 1894 nf5r 2195 19.9d 2204 nfald 2329 exists2 2662 eusv2i 5369 bj-nfimt 36661 bj-nfald 37160 eu6w 42666 |
| Copyright terms: Public domain | W3C validator |