MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nic-dfneg Structured version   Visualization version   GIF version

Theorem nic-dfneg 1678
Description: This theorem "defines" negation in terms of 'nand'. Analogous to nannot 1495. In a pure (standalone) treatment of Nicod's axiom, this theorem would be changed to a definition ($a statement). (Contributed by NM, 11-Dec-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nic-dfneg (((𝜑𝜑) ⊼ ¬ 𝜑) ⊼ (((𝜑𝜑) ⊼ (𝜑𝜑)) ⊼ (¬ 𝜑 ⊼ ¬ 𝜑)))

Proof of Theorem nic-dfneg
StepHypRef Expression
1 nannot 1495 . . 3 𝜑 ↔ (𝜑𝜑))
21bicomi 227 . 2 ((𝜑𝜑) ↔ ¬ 𝜑)
3 nanbi 1496 . 2 (((𝜑𝜑) ↔ ¬ 𝜑) ↔ (((𝜑𝜑) ⊼ ¬ 𝜑) ⊼ (((𝜑𝜑) ⊼ (𝜑𝜑)) ⊼ (¬ 𝜑 ⊼ ¬ 𝜑))))
42, 3mpbi 233 1 (((𝜑𝜑) ⊼ ¬ 𝜑) ⊼ (((𝜑𝜑) ⊼ (𝜑𝜑)) ⊼ (¬ 𝜑 ⊼ ¬ 𝜑)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wnan 1487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-nan 1488
This theorem is referenced by:  nic-luk2  1700  nic-luk3  1701
  Copyright terms: Public domain W3C validator