Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nic-dfneg | Structured version Visualization version GIF version |
Description: This theorem "defines" negation in terms of 'nand'. Analogous to nannot 1494. In a pure (standalone) treatment of Nicod's axiom, this theorem would be changed to a definition ($a statement). (Contributed by NM, 11-Dec-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nic-dfneg | ⊢ (((𝜑 ⊼ 𝜑) ⊼ ¬ 𝜑) ⊼ (((𝜑 ⊼ 𝜑) ⊼ (𝜑 ⊼ 𝜑)) ⊼ (¬ 𝜑 ⊼ ¬ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nannot 1494 | . . 3 ⊢ (¬ 𝜑 ↔ (𝜑 ⊼ 𝜑)) | |
2 | 1 | bicomi 223 | . 2 ⊢ ((𝜑 ⊼ 𝜑) ↔ ¬ 𝜑) |
3 | nanbi 1495 | . 2 ⊢ (((𝜑 ⊼ 𝜑) ↔ ¬ 𝜑) ↔ (((𝜑 ⊼ 𝜑) ⊼ ¬ 𝜑) ⊼ (((𝜑 ⊼ 𝜑) ⊼ (𝜑 ⊼ 𝜑)) ⊼ (¬ 𝜑 ⊼ ¬ 𝜑)))) | |
4 | 2, 3 | mpbi 229 | 1 ⊢ (((𝜑 ⊼ 𝜑) ⊼ ¬ 𝜑) ⊼ (((𝜑 ⊼ 𝜑) ⊼ (𝜑 ⊼ 𝜑)) ⊼ (¬ 𝜑 ⊼ ¬ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ⊼ wnan 1486 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-nan 1487 |
This theorem is referenced by: nic-luk2 1695 nic-luk3 1696 |
Copyright terms: Public domain | W3C validator |