|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nic-dfneg | Structured version Visualization version GIF version | ||
| Description: This theorem "defines" negation in terms of 'nand'. Analogous to nannot 1499. In a pure (standalone) treatment of Nicod's axiom, this theorem would be changed to a definition ($a statement). (Contributed by NM, 11-Dec-2008.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| nic-dfneg | ⊢ (((𝜑 ⊼ 𝜑) ⊼ ¬ 𝜑) ⊼ (((𝜑 ⊼ 𝜑) ⊼ (𝜑 ⊼ 𝜑)) ⊼ (¬ 𝜑 ⊼ ¬ 𝜑))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nannot 1499 | . . 3 ⊢ (¬ 𝜑 ↔ (𝜑 ⊼ 𝜑)) | |
| 2 | 1 | bicomi 224 | . 2 ⊢ ((𝜑 ⊼ 𝜑) ↔ ¬ 𝜑) | 
| 3 | nanbi 1500 | . 2 ⊢ (((𝜑 ⊼ 𝜑) ↔ ¬ 𝜑) ↔ (((𝜑 ⊼ 𝜑) ⊼ ¬ 𝜑) ⊼ (((𝜑 ⊼ 𝜑) ⊼ (𝜑 ⊼ 𝜑)) ⊼ (¬ 𝜑 ⊼ ¬ 𝜑)))) | |
| 4 | 2, 3 | mpbi 230 | 1 ⊢ (((𝜑 ⊼ 𝜑) ⊼ ¬ 𝜑) ⊼ (((𝜑 ⊼ 𝜑) ⊼ (𝜑 ⊼ 𝜑)) ⊼ (¬ 𝜑 ⊼ ¬ 𝜑))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 ⊼ wnan 1491 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-nan 1492 | 
| This theorem is referenced by: nic-luk2 1692 nic-luk3 1693 | 
| Copyright terms: Public domain | W3C validator |