Proof of Theorem nic-luk2
Step | Hyp | Ref
| Expression |
1 | | nic-dfim 1672 |
. . . . 5
⊢ (((¬
𝜑 ⊼ (𝜑 ⊼ 𝜑)) ⊼ (¬ 𝜑 → 𝜑)) ⊼ (((¬ 𝜑 ⊼ (𝜑 ⊼ 𝜑)) ⊼ (¬ 𝜑 ⊼ (𝜑 ⊼ 𝜑))) ⊼ ((¬ 𝜑 → 𝜑) ⊼ (¬ 𝜑 → 𝜑)))) |
2 | 1 | nic-bi2 1692 |
. . . 4
⊢ ((¬
𝜑 → 𝜑) ⊼ ((¬ 𝜑 ⊼ (𝜑 ⊼ 𝜑)) ⊼ (¬ 𝜑 ⊼ (𝜑 ⊼ 𝜑)))) |
3 | | nic-dfneg 1673 |
. . . . . 6
⊢ (((𝜑 ⊼ 𝜑) ⊼ ¬ 𝜑) ⊼ (((𝜑 ⊼ 𝜑) ⊼ (𝜑 ⊼ 𝜑)) ⊼ (¬ 𝜑 ⊼ ¬ 𝜑))) |
4 | | nic-id 1681 |
. . . . . 6
⊢ ((𝜑 ⊼ 𝜑) ⊼ ((𝜑 ⊼ 𝜑) ⊼ (𝜑 ⊼ 𝜑))) |
5 | 3, 4 | nic-iimp1 1685 |
. . . . 5
⊢ ((𝜑 ⊼ 𝜑) ⊼ ((𝜑 ⊼ 𝜑) ⊼ ¬ 𝜑)) |
6 | 5 | nic-isw2 1684 |
. . . 4
⊢ ((𝜑 ⊼ 𝜑) ⊼ (¬ 𝜑 ⊼ (𝜑 ⊼ 𝜑))) |
7 | 2, 6 | nic-iimp1 1685 |
. . 3
⊢ ((𝜑 ⊼ 𝜑) ⊼ (¬ 𝜑 → 𝜑)) |
8 | 7 | nic-isw1 1683 |
. 2
⊢ ((¬
𝜑 → 𝜑) ⊼ (𝜑 ⊼ 𝜑)) |
9 | | nic-dfim 1672 |
. . 3
⊢ ((((¬
𝜑 → 𝜑) ⊼ (𝜑 ⊼ 𝜑)) ⊼ ((¬ 𝜑 → 𝜑) → 𝜑)) ⊼ ((((¬ 𝜑 → 𝜑) ⊼ (𝜑 ⊼ 𝜑)) ⊼ ((¬ 𝜑 → 𝜑) ⊼ (𝜑 ⊼ 𝜑))) ⊼ (((¬ 𝜑 → 𝜑) → 𝜑) ⊼ ((¬ 𝜑 → 𝜑) → 𝜑)))) |
10 | 9 | nic-bi1 1691 |
. 2
⊢ (((¬
𝜑 → 𝜑) ⊼ (𝜑 ⊼ 𝜑)) ⊼ (((¬ 𝜑 → 𝜑) → 𝜑) ⊼ ((¬ 𝜑 → 𝜑) → 𝜑))) |
11 | 8, 10 | nic-mp 1674 |
1
⊢ ((¬
𝜑 → 𝜑) → 𝜑) |