Proof of Theorem nic-luk3
Step | Hyp | Ref
| Expression |
1 | | nic-dfim 1677 |
. . . 4
⊢ (((¬
𝜑 ⊼ (𝜓 ⊼ 𝜓)) ⊼ (¬ 𝜑 → 𝜓)) ⊼ (((¬ 𝜑 ⊼ (𝜓 ⊼ 𝜓)) ⊼ (¬ 𝜑 ⊼ (𝜓 ⊼ 𝜓))) ⊼ ((¬ 𝜑 → 𝜓) ⊼ (¬ 𝜑 → 𝜓)))) |
2 | 1 | nic-bi1 1696 |
. . 3
⊢ ((¬
𝜑 ⊼ (𝜓 ⊼ 𝜓)) ⊼ ((¬ 𝜑 → 𝜓) ⊼ (¬ 𝜑 → 𝜓))) |
3 | | nic-dfneg 1678 |
. . . . 5
⊢ (((𝜑 ⊼ 𝜑) ⊼ ¬ 𝜑) ⊼ (((𝜑 ⊼ 𝜑) ⊼ (𝜑 ⊼ 𝜑)) ⊼ (¬ 𝜑 ⊼ ¬ 𝜑))) |
4 | 3 | nic-bi2 1697 |
. . . 4
⊢ (¬
𝜑 ⊼ ((𝜑 ⊼ 𝜑) ⊼ (𝜑 ⊼ 𝜑))) |
5 | | nic-id 1686 |
. . . 4
⊢ (𝜑 ⊼ (𝜑 ⊼ 𝜑)) |
6 | 4, 5 | nic-iimp1 1690 |
. . 3
⊢ (𝜑 ⊼ ¬ 𝜑) |
7 | 2, 6 | nic-iimp2 1691 |
. 2
⊢ (𝜑 ⊼ ((¬ 𝜑 → 𝜓) ⊼ (¬ 𝜑 → 𝜓))) |
8 | | nic-dfim 1677 |
. . 3
⊢ (((𝜑 ⊼ ((¬ 𝜑 → 𝜓) ⊼ (¬ 𝜑 → 𝜓))) ⊼ (𝜑 → (¬ 𝜑 → 𝜓))) ⊼ (((𝜑 ⊼ ((¬ 𝜑 → 𝜓) ⊼ (¬ 𝜑 → 𝜓))) ⊼ (𝜑 ⊼ ((¬ 𝜑 → 𝜓) ⊼ (¬ 𝜑 → 𝜓)))) ⊼ ((𝜑 → (¬ 𝜑 → 𝜓)) ⊼ (𝜑 → (¬ 𝜑 → 𝜓))))) |
9 | 8 | nic-bi1 1696 |
. 2
⊢ ((𝜑 ⊼ ((¬ 𝜑 → 𝜓) ⊼ (¬ 𝜑 → 𝜓))) ⊼ ((𝜑 → (¬ 𝜑 → 𝜓)) ⊼ (𝜑 → (¬ 𝜑 → 𝜓)))) |
10 | 7, 9 | nic-mp 1679 |
1
⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |