|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nanbi | Structured version Visualization version GIF version | ||
| Description: Biconditional in terms of alternative denial. (Contributed by Jeff Hoffman, 19-Nov-2007.) (Proof shortened by Wolf Lammen, 27-Jun-2020.) | 
| Ref | Expression | 
|---|---|
| nanbi | ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 ⊼ 𝜓) ⊼ ((𝜑 ⊼ 𝜑) ⊼ (𝜓 ⊼ 𝜓)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfbi3 1050 | . . 3 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓))) | |
| 2 | df-or 849 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)) ↔ (¬ (𝜑 ∧ 𝜓) → (¬ 𝜑 ∧ ¬ 𝜓))) | |
| 3 | df-nan 1492 | . . . . 5 ⊢ ((𝜑 ⊼ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | |
| 4 | 3 | bicomi 224 | . . . 4 ⊢ (¬ (𝜑 ∧ 𝜓) ↔ (𝜑 ⊼ 𝜓)) | 
| 5 | nannot 1499 | . . . . 5 ⊢ (¬ 𝜑 ↔ (𝜑 ⊼ 𝜑)) | |
| 6 | nannot 1499 | . . . . 5 ⊢ (¬ 𝜓 ↔ (𝜓 ⊼ 𝜓)) | |
| 7 | 5, 6 | anbi12i 628 | . . . 4 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ((𝜑 ⊼ 𝜑) ∧ (𝜓 ⊼ 𝜓))) | 
| 8 | 4, 7 | imbi12i 350 | . . 3 ⊢ ((¬ (𝜑 ∧ 𝜓) → (¬ 𝜑 ∧ ¬ 𝜓)) ↔ ((𝜑 ⊼ 𝜓) → ((𝜑 ⊼ 𝜑) ∧ (𝜓 ⊼ 𝜓)))) | 
| 9 | 1, 2, 8 | 3bitri 297 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 ⊼ 𝜓) → ((𝜑 ⊼ 𝜑) ∧ (𝜓 ⊼ 𝜓)))) | 
| 10 | nannan 1497 | . 2 ⊢ (((𝜑 ⊼ 𝜓) ⊼ ((𝜑 ⊼ 𝜑) ⊼ (𝜓 ⊼ 𝜓))) ↔ ((𝜑 ⊼ 𝜓) → ((𝜑 ⊼ 𝜑) ∧ (𝜓 ⊼ 𝜓)))) | |
| 11 | 9, 10 | bitr4i 278 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 ⊼ 𝜓) ⊼ ((𝜑 ⊼ 𝜑) ⊼ (𝜓 ⊼ 𝜓)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 ⊼ wnan 1491 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-nan 1492 | 
| This theorem is referenced by: nic-dfim 1669 nic-dfneg 1670 | 
| Copyright terms: Public domain | W3C validator |