| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nic-iimp1 | Structured version Visualization version GIF version | ||
| Description: Inference version of nic-imp 1675 using right-handed term. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nic-iimp1.1 | ⊢ (𝜑 ⊼ (𝜒 ⊼ 𝜓)) |
| nic-iimp1.2 | ⊢ (𝜃 ⊼ 𝜒) |
| Ref | Expression |
|---|---|
| nic-iimp1 | ⊢ (𝜃 ⊼ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nic-iimp1.2 | . . 3 ⊢ (𝜃 ⊼ 𝜒) | |
| 2 | nic-iimp1.1 | . . . 4 ⊢ (𝜑 ⊼ (𝜒 ⊼ 𝜓)) | |
| 3 | 2 | nic-imp 1675 | . . 3 ⊢ ((𝜃 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))) |
| 4 | 1, 3 | nic-mp 1671 | . 2 ⊢ (𝜑 ⊼ 𝜃) |
| 5 | 4 | nic-isw1 1680 | 1 ⊢ (𝜃 ⊼ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ⊼ wnan 1491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-nan 1492 |
| This theorem is referenced by: nic-iimp2 1683 nic-bi1 1688 nic-bi2 1689 nic-luk2 1692 nic-luk3 1693 |
| Copyright terms: Public domain | W3C validator |