Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nic-isw2 | Structured version Visualization version GIF version |
Description: Inference for swapping nested terms. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nic-isw2.1 | ⊢ (𝜓 ⊼ (𝜃 ⊼ 𝜑)) |
Ref | Expression |
---|---|
nic-isw2 | ⊢ (𝜓 ⊼ (𝜑 ⊼ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nic-isw2.1 | . . 3 ⊢ (𝜓 ⊼ (𝜃 ⊼ 𝜑)) | |
2 | nic-swap 1687 | . . . 4 ⊢ ((𝜑 ⊼ 𝜃) ⊼ ((𝜃 ⊼ 𝜑) ⊼ (𝜃 ⊼ 𝜑))) | |
3 | 2 | nic-imp 1683 | . . 3 ⊢ ((𝜓 ⊼ (𝜃 ⊼ 𝜑)) ⊼ (((𝜑 ⊼ 𝜃) ⊼ 𝜓) ⊼ ((𝜑 ⊼ 𝜃) ⊼ 𝜓))) |
4 | 1, 3 | nic-mp 1679 | . 2 ⊢ ((𝜑 ⊼ 𝜃) ⊼ 𝜓) |
5 | 4 | nic-isw1 1688 | 1 ⊢ (𝜓 ⊼ (𝜑 ⊼ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: ⊼ wnan 1487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-nan 1488 |
This theorem is referenced by: nic-bi1 1696 nic-bi2 1697 nic-luk1 1699 nic-luk2 1700 |
Copyright terms: Public domain | W3C validator |