|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nic-isw2 | Structured version Visualization version GIF version | ||
| Description: Inference for swapping nested terms. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| nic-isw2.1 | ⊢ (𝜓 ⊼ (𝜃 ⊼ 𝜑)) | 
| Ref | Expression | 
|---|---|
| nic-isw2 | ⊢ (𝜓 ⊼ (𝜑 ⊼ 𝜃)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nic-isw2.1 | . . 3 ⊢ (𝜓 ⊼ (𝜃 ⊼ 𝜑)) | |
| 2 | nic-swap 1679 | . . . 4 ⊢ ((𝜑 ⊼ 𝜃) ⊼ ((𝜃 ⊼ 𝜑) ⊼ (𝜃 ⊼ 𝜑))) | |
| 3 | 2 | nic-imp 1675 | . . 3 ⊢ ((𝜓 ⊼ (𝜃 ⊼ 𝜑)) ⊼ (((𝜑 ⊼ 𝜃) ⊼ 𝜓) ⊼ ((𝜑 ⊼ 𝜃) ⊼ 𝜓))) | 
| 4 | 1, 3 | nic-mp 1671 | . 2 ⊢ ((𝜑 ⊼ 𝜃) ⊼ 𝜓) | 
| 5 | 4 | nic-isw1 1680 | 1 ⊢ (𝜓 ⊼ (𝜑 ⊼ 𝜃)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ⊼ wnan 1491 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-nan 1492 | 
| This theorem is referenced by: nic-bi1 1688 nic-bi2 1689 nic-luk1 1691 nic-luk2 1692 | 
| Copyright terms: Public domain | W3C validator |