MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegleb Structured version   Visualization version   GIF version

Theorem mdegleb 25511
Description: Property of being of limited degree. (Contributed by Stefan O'Rear, 19-Mar-2015.)
Hypotheses
Ref Expression
mdegval.d 𝐷 = (𝐼 mDeg 𝑅)
mdegval.p 𝑃 = (𝐼 mPoly 𝑅)
mdegval.b 𝐵 = (Base‘𝑃)
mdegval.z 0 = (0g𝑅)
mdegval.a 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
mdegval.h 𝐻 = (𝐴 ↦ (ℂfld Σg ))
Assertion
Ref Expression
mdegleb ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝐷𝐹) ≤ 𝐺 ↔ ∀𝑥𝐴 (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 )))
Distinct variable groups:   𝐴,   𝑚,𝐼   0 ,   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝑥,𝐻   ,𝐼   𝑥,𝑅   𝑥, 0   ,𝑚
Allowed substitution hints:   𝐴(𝑚)   𝐵(,𝑚)   𝐷(𝑥,,𝑚)   𝑃(𝑥,,𝑚)   𝑅(,𝑚)   𝐹(,𝑚)   𝐺(,𝑚)   𝐻(,𝑚)   𝐼(𝑥)   0 (𝑚)

Proof of Theorem mdegleb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mdegval.d . . . . 5 𝐷 = (𝐼 mDeg 𝑅)
2 mdegval.p . . . . 5 𝑃 = (𝐼 mPoly 𝑅)
3 mdegval.b . . . . 5 𝐵 = (Base‘𝑃)
4 mdegval.z . . . . 5 0 = (0g𝑅)
5 mdegval.a . . . . 5 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
6 mdegval.h . . . . 5 𝐻 = (𝐴 ↦ (ℂfld Σg ))
71, 2, 3, 4, 5, 6mdegval 25510 . . . 4 (𝐹𝐵 → (𝐷𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ))
87adantr 481 . . 3 ((𝐹𝐵𝐺 ∈ ℝ*) → (𝐷𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ))
98breq1d 5151 . 2 ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝐷𝐹) ≤ 𝐺 ↔ sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ≤ 𝐺))
10 imassrn 6060 . . . 4 (𝐻 “ (𝐹 supp 0 )) ⊆ ran 𝐻
115, 6tdeglem1 25502 . . . . . . 7 𝐻:𝐴⟶ℕ0
1211a1i 11 . . . . . 6 ((𝐹𝐵𝐺 ∈ ℝ*) → 𝐻:𝐴⟶ℕ0)
1312frnd 6712 . . . . 5 ((𝐹𝐵𝐺 ∈ ℝ*) → ran 𝐻 ⊆ ℕ0)
14 nn0ssre 12458 . . . . . 6 0 ⊆ ℝ
15 ressxr 11240 . . . . . 6 ℝ ⊆ ℝ*
1614, 15sstri 3987 . . . . 5 0 ⊆ ℝ*
1713, 16sstrdi 3990 . . . 4 ((𝐹𝐵𝐺 ∈ ℝ*) → ran 𝐻 ⊆ ℝ*)
1810, 17sstrid 3989 . . 3 ((𝐹𝐵𝐺 ∈ ℝ*) → (𝐻 “ (𝐹 supp 0 )) ⊆ ℝ*)
19 supxrleub 13287 . . 3 (((𝐻 “ (𝐹 supp 0 )) ⊆ ℝ*𝐺 ∈ ℝ*) → (sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ≤ 𝐺 ↔ ∀𝑦 ∈ (𝐻 “ (𝐹 supp 0 ))𝑦𝐺))
2018, 19sylancom 588 . 2 ((𝐹𝐵𝐺 ∈ ℝ*) → (sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ≤ 𝐺 ↔ ∀𝑦 ∈ (𝐻 “ (𝐹 supp 0 ))𝑦𝐺))
2112ffnd 6705 . . . 4 ((𝐹𝐵𝐺 ∈ ℝ*) → 𝐻 Fn 𝐴)
22 suppssdm 8144 . . . . 5 (𝐹 supp 0 ) ⊆ dom 𝐹
23 eqid 2731 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
24 simpl 483 . . . . . 6 ((𝐹𝐵𝐺 ∈ ℝ*) → 𝐹𝐵)
252, 23, 3, 5, 24mplelf 21486 . . . . 5 ((𝐹𝐵𝐺 ∈ ℝ*) → 𝐹:𝐴⟶(Base‘𝑅))
2622, 25fssdm 6724 . . . 4 ((𝐹𝐵𝐺 ∈ ℝ*) → (𝐹 supp 0 ) ⊆ 𝐴)
27 breq1 5144 . . . . 5 (𝑦 = (𝐻𝑥) → (𝑦𝐺 ↔ (𝐻𝑥) ≤ 𝐺))
2827ralima 7224 . . . 4 ((𝐻 Fn 𝐴 ∧ (𝐹 supp 0 ) ⊆ 𝐴) → (∀𝑦 ∈ (𝐻 “ (𝐹 supp 0 ))𝑦𝐺 ↔ ∀𝑥 ∈ (𝐹 supp 0 )(𝐻𝑥) ≤ 𝐺))
2921, 26, 28syl2anc 584 . . 3 ((𝐹𝐵𝐺 ∈ ℝ*) → (∀𝑦 ∈ (𝐻 “ (𝐹 supp 0 ))𝑦𝐺 ↔ ∀𝑥 ∈ (𝐹 supp 0 )(𝐻𝑥) ≤ 𝐺))
3025ffnd 6705 . . . . . . . 8 ((𝐹𝐵𝐺 ∈ ℝ*) → 𝐹 Fn 𝐴)
314fvexi 6892 . . . . . . . . 9 0 ∈ V
3231a1i 11 . . . . . . . 8 ((𝐹𝐵𝐺 ∈ ℝ*) → 0 ∈ V)
33 elsuppfng 8137 . . . . . . . 8 ((𝐹 Fn 𝐴𝐹𝐵0 ∈ V) → (𝑥 ∈ (𝐹 supp 0 ) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ≠ 0 )))
3430, 24, 32, 33syl3anc 1371 . . . . . . 7 ((𝐹𝐵𝐺 ∈ ℝ*) → (𝑥 ∈ (𝐹 supp 0 ) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ≠ 0 )))
35 fvex 6891 . . . . . . . . . 10 (𝐹𝑥) ∈ V
3635biantrur 531 . . . . . . . . 9 ((𝐹𝑥) ≠ 0 ↔ ((𝐹𝑥) ∈ V ∧ (𝐹𝑥) ≠ 0 ))
37 eldifsn 4783 . . . . . . . . 9 ((𝐹𝑥) ∈ (V ∖ { 0 }) ↔ ((𝐹𝑥) ∈ V ∧ (𝐹𝑥) ≠ 0 ))
3836, 37bitr4i 277 . . . . . . . 8 ((𝐹𝑥) ≠ 0 ↔ (𝐹𝑥) ∈ (V ∖ { 0 }))
3938anbi2i 623 . . . . . . 7 ((𝑥𝐴 ∧ (𝐹𝑥) ≠ 0 ) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ { 0 })))
4034, 39bitrdi 286 . . . . . 6 ((𝐹𝐵𝐺 ∈ ℝ*) → (𝑥 ∈ (𝐹 supp 0 ) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ { 0 }))))
4140imbi1d 341 . . . . 5 ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝑥 ∈ (𝐹 supp 0 ) → (𝐻𝑥) ≤ 𝐺) ↔ ((𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ { 0 })) → (𝐻𝑥) ≤ 𝐺)))
42 impexp 451 . . . . . 6 (((𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ { 0 })) → (𝐻𝑥) ≤ 𝐺) ↔ (𝑥𝐴 → ((𝐹𝑥) ∈ (V ∖ { 0 }) → (𝐻𝑥) ≤ 𝐺)))
43 con34b 315 . . . . . . . 8 (((𝐹𝑥) ∈ (V ∖ { 0 }) → (𝐻𝑥) ≤ 𝐺) ↔ (¬ (𝐻𝑥) ≤ 𝐺 → ¬ (𝐹𝑥) ∈ (V ∖ { 0 })))
44 simplr 767 . . . . . . . . . . 11 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → 𝐺 ∈ ℝ*)
4512ffvelcdmda 7071 . . . . . . . . . . . 12 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → (𝐻𝑥) ∈ ℕ0)
4616, 45sselid 3976 . . . . . . . . . . 11 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → (𝐻𝑥) ∈ ℝ*)
47 xrltnle 11263 . . . . . . . . . . 11 ((𝐺 ∈ ℝ* ∧ (𝐻𝑥) ∈ ℝ*) → (𝐺 < (𝐻𝑥) ↔ ¬ (𝐻𝑥) ≤ 𝐺))
4844, 46, 47syl2anc 584 . . . . . . . . . 10 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → (𝐺 < (𝐻𝑥) ↔ ¬ (𝐻𝑥) ≤ 𝐺))
4948bicomd 222 . . . . . . . . 9 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → (¬ (𝐻𝑥) ≤ 𝐺𝐺 < (𝐻𝑥)))
50 ianor 980 . . . . . . . . . . 11 (¬ ((𝐹𝑥) ∈ V ∧ (𝐹𝑥) ≠ 0 ) ↔ (¬ (𝐹𝑥) ∈ V ∨ ¬ (𝐹𝑥) ≠ 0 ))
5150, 37xchnxbir 332 . . . . . . . . . 10 (¬ (𝐹𝑥) ∈ (V ∖ { 0 }) ↔ (¬ (𝐹𝑥) ∈ V ∨ ¬ (𝐹𝑥) ≠ 0 ))
52 orcom 868 . . . . . . . . . . . 12 ((¬ (𝐹𝑥) ∈ V ∨ ¬ (𝐹𝑥) ≠ 0 ) ↔ (¬ (𝐹𝑥) ≠ 0 ∨ ¬ (𝐹𝑥) ∈ V))
5335notnoti 143 . . . . . . . . . . . . 13 ¬ ¬ (𝐹𝑥) ∈ V
5453biorfi 937 . . . . . . . . . . . 12 (¬ (𝐹𝑥) ≠ 0 ↔ (¬ (𝐹𝑥) ≠ 0 ∨ ¬ (𝐹𝑥) ∈ V))
55 nne 2943 . . . . . . . . . . . 12 (¬ (𝐹𝑥) ≠ 0 ↔ (𝐹𝑥) = 0 )
5652, 54, 553bitr2i 298 . . . . . . . . . . 11 ((¬ (𝐹𝑥) ∈ V ∨ ¬ (𝐹𝑥) ≠ 0 ) ↔ (𝐹𝑥) = 0 )
5756a1i 11 . . . . . . . . . 10 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → ((¬ (𝐹𝑥) ∈ V ∨ ¬ (𝐹𝑥) ≠ 0 ) ↔ (𝐹𝑥) = 0 ))
5851, 57bitrid 282 . . . . . . . . 9 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → (¬ (𝐹𝑥) ∈ (V ∖ { 0 }) ↔ (𝐹𝑥) = 0 ))
5949, 58imbi12d 344 . . . . . . . 8 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → ((¬ (𝐻𝑥) ≤ 𝐺 → ¬ (𝐹𝑥) ∈ (V ∖ { 0 })) ↔ (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 )))
6043, 59bitrid 282 . . . . . . 7 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → (((𝐹𝑥) ∈ (V ∖ { 0 }) → (𝐻𝑥) ≤ 𝐺) ↔ (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 )))
6160pm5.74da 802 . . . . . 6 ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝑥𝐴 → ((𝐹𝑥) ∈ (V ∖ { 0 }) → (𝐻𝑥) ≤ 𝐺)) ↔ (𝑥𝐴 → (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 ))))
6242, 61bitrid 282 . . . . 5 ((𝐹𝐵𝐺 ∈ ℝ*) → (((𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ { 0 })) → (𝐻𝑥) ≤ 𝐺) ↔ (𝑥𝐴 → (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 ))))
6341, 62bitrd 278 . . . 4 ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝑥 ∈ (𝐹 supp 0 ) → (𝐻𝑥) ≤ 𝐺) ↔ (𝑥𝐴 → (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 ))))
6463ralbidv2 3172 . . 3 ((𝐹𝐵𝐺 ∈ ℝ*) → (∀𝑥 ∈ (𝐹 supp 0 )(𝐻𝑥) ≤ 𝐺 ↔ ∀𝑥𝐴 (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 )))
6529, 64bitrd 278 . 2 ((𝐹𝐵𝐺 ∈ ℝ*) → (∀𝑦 ∈ (𝐻 “ (𝐹 supp 0 ))𝑦𝐺 ↔ ∀𝑥𝐴 (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 )))
669, 20, 653bitrd 304 1 ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝐷𝐹) ≤ 𝐺 ↔ ∀𝑥𝐴 (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2939  wral 3060  {crab 3431  Vcvv 3473  cdif 3941  wss 3944  {csn 4622   class class class wbr 5141  cmpt 5224  ccnv 5668  ran crn 5670  cima 5672   Fn wfn 6527  wf 6528  cfv 6532  (class class class)co 7393   supp csupp 8128  m cmap 8803  Fincfn 8922  supcsup 9417  cr 11091  *cxr 11229   < clt 11230  cle 11231  cn 12194  0cn0 12454  Basecbs 17126  0gc0g 17367   Σg cgsu 17368  fldccnfld 20878   mPoly cmpl 21390   mDeg cmdg 25497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-pre-sup 11170  ax-addf 11171  ax-mulf 11172
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-isom 6541  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-of 7653  df-om 7839  df-1st 7957  df-2nd 7958  df-supp 8129  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-er 8686  df-map 8805  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-fsupp 9345  df-sup 9419  df-oi 9487  df-card 9916  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-nn 12195  df-2 12257  df-3 12258  df-4 12259  df-5 12260  df-6 12261  df-7 12262  df-8 12263  df-9 12264  df-n0 12455  df-z 12541  df-dec 12660  df-uz 12805  df-fz 13467  df-fzo 13610  df-seq 13949  df-hash 14273  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17127  df-ress 17156  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-0g 17369  df-gsum 17370  df-mgm 18543  df-sgrp 18592  df-mnd 18603  df-submnd 18648  df-grp 18797  df-minusg 18798  df-cntz 19147  df-cmn 19614  df-abl 19615  df-mgp 19947  df-ur 19964  df-ring 20016  df-cring 20017  df-cnfld 20879  df-psr 21393  df-mpl 21395  df-mdeg 25499
This theorem is referenced by:  mdeglt  25512  mdegaddle  25521  mdegvscale  25522  mdegle0  25524  mdegmullem  25525  deg1leb  25542
  Copyright terms: Public domain W3C validator