MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegleb Structured version   Visualization version   GIF version

Theorem mdegleb 24652
Description: Property of being of limited degree. (Contributed by Stefan O'Rear, 19-Mar-2015.)
Hypotheses
Ref Expression
mdegval.d 𝐷 = (𝐼 mDeg 𝑅)
mdegval.p 𝑃 = (𝐼 mPoly 𝑅)
mdegval.b 𝐵 = (Base‘𝑃)
mdegval.z 0 = (0g𝑅)
mdegval.a 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
mdegval.h 𝐻 = (𝐴 ↦ (ℂfld Σg ))
Assertion
Ref Expression
mdegleb ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝐷𝐹) ≤ 𝐺 ↔ ∀𝑥𝐴 (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 )))
Distinct variable groups:   𝐴,   𝑚,𝐼   0 ,   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝑥,𝐻   ,𝐼   𝑥,𝑅   𝑥, 0   ,𝑚
Allowed substitution hints:   𝐴(𝑚)   𝐵(,𝑚)   𝐷(𝑥,,𝑚)   𝑃(𝑥,,𝑚)   𝑅(,𝑚)   𝐹(,𝑚)   𝐺(,𝑚)   𝐻(,𝑚)   𝐼(𝑥)   0 (𝑚)

Proof of Theorem mdegleb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mdegval.d . . . . 5 𝐷 = (𝐼 mDeg 𝑅)
2 mdegval.p . . . . 5 𝑃 = (𝐼 mPoly 𝑅)
3 mdegval.b . . . . 5 𝐵 = (Base‘𝑃)
4 mdegval.z . . . . 5 0 = (0g𝑅)
5 mdegval.a . . . . 5 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
6 mdegval.h . . . . 5 𝐻 = (𝐴 ↦ (ℂfld Σg ))
71, 2, 3, 4, 5, 6mdegval 24651 . . . 4 (𝐹𝐵 → (𝐷𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ))
87adantr 483 . . 3 ((𝐹𝐵𝐺 ∈ ℝ*) → (𝐷𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ))
98breq1d 5069 . 2 ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝐷𝐹) ≤ 𝐺 ↔ sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ≤ 𝐺))
10 imassrn 5935 . . . 4 (𝐻 “ (𝐹 supp 0 )) ⊆ ran 𝐻
112, 3mplrcl 20264 . . . . . . . 8 (𝐹𝐵𝐼 ∈ V)
1211adantr 483 . . . . . . 7 ((𝐹𝐵𝐺 ∈ ℝ*) → 𝐼 ∈ V)
135, 6tdeglem1 24646 . . . . . . 7 (𝐼 ∈ V → 𝐻:𝐴⟶ℕ0)
1412, 13syl 17 . . . . . 6 ((𝐹𝐵𝐺 ∈ ℝ*) → 𝐻:𝐴⟶ℕ0)
1514frnd 6516 . . . . 5 ((𝐹𝐵𝐺 ∈ ℝ*) → ran 𝐻 ⊆ ℕ0)
16 nn0ssre 11895 . . . . . 6 0 ⊆ ℝ
17 ressxr 10679 . . . . . 6 ℝ ⊆ ℝ*
1816, 17sstri 3976 . . . . 5 0 ⊆ ℝ*
1915, 18sstrdi 3979 . . . 4 ((𝐹𝐵𝐺 ∈ ℝ*) → ran 𝐻 ⊆ ℝ*)
2010, 19sstrid 3978 . . 3 ((𝐹𝐵𝐺 ∈ ℝ*) → (𝐻 “ (𝐹 supp 0 )) ⊆ ℝ*)
21 supxrleub 12713 . . 3 (((𝐻 “ (𝐹 supp 0 )) ⊆ ℝ*𝐺 ∈ ℝ*) → (sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ≤ 𝐺 ↔ ∀𝑦 ∈ (𝐻 “ (𝐹 supp 0 ))𝑦𝐺))
2220, 21sylancom 590 . 2 ((𝐹𝐵𝐺 ∈ ℝ*) → (sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ≤ 𝐺 ↔ ∀𝑦 ∈ (𝐻 “ (𝐹 supp 0 ))𝑦𝐺))
2314ffnd 6510 . . . 4 ((𝐹𝐵𝐺 ∈ ℝ*) → 𝐻 Fn 𝐴)
24 suppssdm 7837 . . . . 5 (𝐹 supp 0 ) ⊆ dom 𝐹
25 eqid 2821 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
26 simpl 485 . . . . . 6 ((𝐹𝐵𝐺 ∈ ℝ*) → 𝐹𝐵)
272, 25, 3, 5, 26mplelf 20207 . . . . 5 ((𝐹𝐵𝐺 ∈ ℝ*) → 𝐹:𝐴⟶(Base‘𝑅))
2824, 27fssdm 6525 . . . 4 ((𝐹𝐵𝐺 ∈ ℝ*) → (𝐹 supp 0 ) ⊆ 𝐴)
29 breq1 5062 . . . . 5 (𝑦 = (𝐻𝑥) → (𝑦𝐺 ↔ (𝐻𝑥) ≤ 𝐺))
3029ralima 6994 . . . 4 ((𝐻 Fn 𝐴 ∧ (𝐹 supp 0 ) ⊆ 𝐴) → (∀𝑦 ∈ (𝐻 “ (𝐹 supp 0 ))𝑦𝐺 ↔ ∀𝑥 ∈ (𝐹 supp 0 )(𝐻𝑥) ≤ 𝐺))
3123, 28, 30syl2anc 586 . . 3 ((𝐹𝐵𝐺 ∈ ℝ*) → (∀𝑦 ∈ (𝐻 “ (𝐹 supp 0 ))𝑦𝐺 ↔ ∀𝑥 ∈ (𝐹 supp 0 )(𝐻𝑥) ≤ 𝐺))
3227ffnd 6510 . . . . . . 7 ((𝐹𝐵𝐺 ∈ ℝ*) → 𝐹 Fn 𝐴)
33 ovex 7183 . . . . . . . . . 10 (ℕ0m 𝐼) ∈ V
3433rabex 5228 . . . . . . . . 9 {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin} ∈ V
3534a1i 11 . . . . . . . 8 ((𝐹𝐵𝐺 ∈ ℝ*) → {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin} ∈ V)
365, 35eqeltrid 2917 . . . . . . 7 ((𝐹𝐵𝐺 ∈ ℝ*) → 𝐴 ∈ V)
374fvexi 6679 . . . . . . . 8 0 ∈ V
3837a1i 11 . . . . . . 7 ((𝐹𝐵𝐺 ∈ ℝ*) → 0 ∈ V)
39 elsuppfn 7832 . . . . . . . 8 ((𝐹 Fn 𝐴𝐴 ∈ V ∧ 0 ∈ V) → (𝑥 ∈ (𝐹 supp 0 ) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ≠ 0 )))
40 fvex 6678 . . . . . . . . . . . 12 (𝐹𝑥) ∈ V
4140biantrur 533 . . . . . . . . . . 11 ((𝐹𝑥) ≠ 0 ↔ ((𝐹𝑥) ∈ V ∧ (𝐹𝑥) ≠ 0 ))
42 eldifsn 4713 . . . . . . . . . . 11 ((𝐹𝑥) ∈ (V ∖ { 0 }) ↔ ((𝐹𝑥) ∈ V ∧ (𝐹𝑥) ≠ 0 ))
4341, 42bitr4i 280 . . . . . . . . . 10 ((𝐹𝑥) ≠ 0 ↔ (𝐹𝑥) ∈ (V ∖ { 0 }))
4443a1i 11 . . . . . . . . 9 ((𝐹 Fn 𝐴𝐴 ∈ V ∧ 0 ∈ V) → ((𝐹𝑥) ≠ 0 ↔ (𝐹𝑥) ∈ (V ∖ { 0 })))
4544anbi2d 630 . . . . . . . 8 ((𝐹 Fn 𝐴𝐴 ∈ V ∧ 0 ∈ V) → ((𝑥𝐴 ∧ (𝐹𝑥) ≠ 0 ) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ { 0 }))))
4639, 45bitrd 281 . . . . . . 7 ((𝐹 Fn 𝐴𝐴 ∈ V ∧ 0 ∈ V) → (𝑥 ∈ (𝐹 supp 0 ) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ { 0 }))))
4732, 36, 38, 46syl3anc 1367 . . . . . 6 ((𝐹𝐵𝐺 ∈ ℝ*) → (𝑥 ∈ (𝐹 supp 0 ) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ { 0 }))))
4847imbi1d 344 . . . . 5 ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝑥 ∈ (𝐹 supp 0 ) → (𝐻𝑥) ≤ 𝐺) ↔ ((𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ { 0 })) → (𝐻𝑥) ≤ 𝐺)))
49 impexp 453 . . . . . 6 (((𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ { 0 })) → (𝐻𝑥) ≤ 𝐺) ↔ (𝑥𝐴 → ((𝐹𝑥) ∈ (V ∖ { 0 }) → (𝐻𝑥) ≤ 𝐺)))
50 con34b 318 . . . . . . . 8 (((𝐹𝑥) ∈ (V ∖ { 0 }) → (𝐻𝑥) ≤ 𝐺) ↔ (¬ (𝐻𝑥) ≤ 𝐺 → ¬ (𝐹𝑥) ∈ (V ∖ { 0 })))
51 simplr 767 . . . . . . . . . . 11 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → 𝐺 ∈ ℝ*)
5214ffvelrnda 6846 . . . . . . . . . . . 12 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → (𝐻𝑥) ∈ ℕ0)
5318, 52sseldi 3965 . . . . . . . . . . 11 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → (𝐻𝑥) ∈ ℝ*)
54 xrltnle 10702 . . . . . . . . . . 11 ((𝐺 ∈ ℝ* ∧ (𝐻𝑥) ∈ ℝ*) → (𝐺 < (𝐻𝑥) ↔ ¬ (𝐻𝑥) ≤ 𝐺))
5551, 53, 54syl2anc 586 . . . . . . . . . 10 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → (𝐺 < (𝐻𝑥) ↔ ¬ (𝐻𝑥) ≤ 𝐺))
5655bicomd 225 . . . . . . . . 9 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → (¬ (𝐻𝑥) ≤ 𝐺𝐺 < (𝐻𝑥)))
57 ianor 978 . . . . . . . . . . 11 (¬ ((𝐹𝑥) ∈ V ∧ (𝐹𝑥) ≠ 0 ) ↔ (¬ (𝐹𝑥) ∈ V ∨ ¬ (𝐹𝑥) ≠ 0 ))
5857, 42xchnxbir 335 . . . . . . . . . 10 (¬ (𝐹𝑥) ∈ (V ∖ { 0 }) ↔ (¬ (𝐹𝑥) ∈ V ∨ ¬ (𝐹𝑥) ≠ 0 ))
59 orcom 866 . . . . . . . . . . . 12 ((¬ (𝐹𝑥) ∈ V ∨ ¬ (𝐹𝑥) ≠ 0 ) ↔ (¬ (𝐹𝑥) ≠ 0 ∨ ¬ (𝐹𝑥) ∈ V))
6040notnoti 145 . . . . . . . . . . . . 13 ¬ ¬ (𝐹𝑥) ∈ V
6160biorfi 935 . . . . . . . . . . . 12 (¬ (𝐹𝑥) ≠ 0 ↔ (¬ (𝐹𝑥) ≠ 0 ∨ ¬ (𝐹𝑥) ∈ V))
62 nne 3020 . . . . . . . . . . . 12 (¬ (𝐹𝑥) ≠ 0 ↔ (𝐹𝑥) = 0 )
6359, 61, 623bitr2i 301 . . . . . . . . . . 11 ((¬ (𝐹𝑥) ∈ V ∨ ¬ (𝐹𝑥) ≠ 0 ) ↔ (𝐹𝑥) = 0 )
6463a1i 11 . . . . . . . . . 10 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → ((¬ (𝐹𝑥) ∈ V ∨ ¬ (𝐹𝑥) ≠ 0 ) ↔ (𝐹𝑥) = 0 ))
6558, 64syl5bb 285 . . . . . . . . 9 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → (¬ (𝐹𝑥) ∈ (V ∖ { 0 }) ↔ (𝐹𝑥) = 0 ))
6656, 65imbi12d 347 . . . . . . . 8 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → ((¬ (𝐻𝑥) ≤ 𝐺 → ¬ (𝐹𝑥) ∈ (V ∖ { 0 })) ↔ (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 )))
6750, 66syl5bb 285 . . . . . . 7 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → (((𝐹𝑥) ∈ (V ∖ { 0 }) → (𝐻𝑥) ≤ 𝐺) ↔ (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 )))
6867pm5.74da 802 . . . . . 6 ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝑥𝐴 → ((𝐹𝑥) ∈ (V ∖ { 0 }) → (𝐻𝑥) ≤ 𝐺)) ↔ (𝑥𝐴 → (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 ))))
6949, 68syl5bb 285 . . . . 5 ((𝐹𝐵𝐺 ∈ ℝ*) → (((𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ { 0 })) → (𝐻𝑥) ≤ 𝐺) ↔ (𝑥𝐴 → (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 ))))
7048, 69bitrd 281 . . . 4 ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝑥 ∈ (𝐹 supp 0 ) → (𝐻𝑥) ≤ 𝐺) ↔ (𝑥𝐴 → (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 ))))
7170ralbidv2 3195 . . 3 ((𝐹𝐵𝐺 ∈ ℝ*) → (∀𝑥 ∈ (𝐹 supp 0 )(𝐻𝑥) ≤ 𝐺 ↔ ∀𝑥𝐴 (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 )))
7231, 71bitrd 281 . 2 ((𝐹𝐵𝐺 ∈ ℝ*) → (∀𝑦 ∈ (𝐻 “ (𝐹 supp 0 ))𝑦𝐺 ↔ ∀𝑥𝐴 (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 )))
739, 22, 723bitrd 307 1 ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝐷𝐹) ≤ 𝐺 ↔ ∀𝑥𝐴 (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  {crab 3142  Vcvv 3495  cdif 3933  wss 3936  {csn 4561   class class class wbr 5059  cmpt 5139  ccnv 5549  ran crn 5551  cima 5553   Fn wfn 6345  wf 6346  cfv 6350  (class class class)co 7150   supp csupp 7824  m cmap 8400  Fincfn 8503  supcsup 8898  cr 10530  *cxr 10668   < clt 10669  cle 10670  cn 11632  0cn0 11891  Basecbs 16477  0gc0g 16707   Σg cgsu 16708   mPoly cmpl 20127  fldccnfld 20539   mDeg cmdg 24641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-sup 8900  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12887  df-fzo 13028  df-seq 13364  df-hash 13685  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-0g 16709  df-gsum 16710  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-grp 18100  df-minusg 18101  df-cntz 18441  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-cring 19294  df-psr 20130  df-mpl 20132  df-cnfld 20540  df-mdeg 24643
This theorem is referenced by:  mdeglt  24653  mdegaddle  24662  mdegvscale  24663  mdegle0  24665  mdegmullem  24666  deg1leb  24683
  Copyright terms: Public domain W3C validator