Step | Hyp | Ref
| Expression |
1 | | mdegval.d |
. . . . 5
⊢ 𝐷 = (𝐼 mDeg 𝑅) |
2 | | mdegval.p |
. . . . 5
⊢ 𝑃 = (𝐼 mPoly 𝑅) |
3 | | mdegval.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑃) |
4 | | mdegval.z |
. . . . 5
⊢ 0 =
(0g‘𝑅) |
5 | | mdegval.a |
. . . . 5
⊢ 𝐴 = {𝑚 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑚 “ ℕ) ∈
Fin} |
6 | | mdegval.h |
. . . . 5
⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld
Σg ℎ)) |
7 | 1, 2, 3, 4, 5, 6 | mdegval 25209 |
. . . 4
⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*,
< )) |
8 | 7 | adantr 480 |
. . 3
⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → (𝐷‘𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*,
< )) |
9 | 8 | breq1d 5088 |
. 2
⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → ((𝐷‘𝐹) ≤ 𝐺 ↔ sup((𝐻 “ (𝐹 supp 0 )), ℝ*,
< ) ≤ 𝐺)) |
10 | | imassrn 5977 |
. . . 4
⊢ (𝐻 “ (𝐹 supp 0 )) ⊆ ran 𝐻 |
11 | 5, 6 | tdeglem1 25201 |
. . . . . . 7
⊢ 𝐻:𝐴⟶ℕ0 |
12 | 11 | a1i 11 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → 𝐻:𝐴⟶ℕ0) |
13 | 12 | frnd 6604 |
. . . . 5
⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → ran
𝐻 ⊆
ℕ0) |
14 | | nn0ssre 12220 |
. . . . . 6
⊢
ℕ0 ⊆ ℝ |
15 | | ressxr 11003 |
. . . . . 6
⊢ ℝ
⊆ ℝ* |
16 | 14, 15 | sstri 3934 |
. . . . 5
⊢
ℕ0 ⊆ ℝ* |
17 | 13, 16 | sstrdi 3937 |
. . . 4
⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → ran
𝐻 ⊆
ℝ*) |
18 | 10, 17 | sstrid 3936 |
. . 3
⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → (𝐻 “ (𝐹 supp 0 )) ⊆
ℝ*) |
19 | | supxrleub 13042 |
. . 3
⊢ (((𝐻 “ (𝐹 supp 0 )) ⊆
ℝ* ∧ 𝐺
∈ ℝ*) → (sup((𝐻 “ (𝐹 supp 0 )), ℝ*,
< ) ≤ 𝐺 ↔
∀𝑦 ∈ (𝐻 “ (𝐹 supp 0 ))𝑦 ≤ 𝐺)) |
20 | 18, 19 | sylancom 587 |
. 2
⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) →
(sup((𝐻 “ (𝐹 supp 0 )), ℝ*,
< ) ≤ 𝐺 ↔
∀𝑦 ∈ (𝐻 “ (𝐹 supp 0 ))𝑦 ≤ 𝐺)) |
21 | 12 | ffnd 6597 |
. . . 4
⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → 𝐻 Fn 𝐴) |
22 | | suppssdm 7977 |
. . . . 5
⊢ (𝐹 supp 0 ) ⊆ dom 𝐹 |
23 | | eqid 2739 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
24 | | simpl 482 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → 𝐹 ∈ 𝐵) |
25 | 2, 23, 3, 5, 24 | mplelf 21185 |
. . . . 5
⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → 𝐹:𝐴⟶(Base‘𝑅)) |
26 | 22, 25 | fssdm 6616 |
. . . 4
⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → (𝐹 supp 0 ) ⊆ 𝐴) |
27 | | breq1 5081 |
. . . . 5
⊢ (𝑦 = (𝐻‘𝑥) → (𝑦 ≤ 𝐺 ↔ (𝐻‘𝑥) ≤ 𝐺)) |
28 | 27 | ralima 7108 |
. . . 4
⊢ ((𝐻 Fn 𝐴 ∧ (𝐹 supp 0 ) ⊆ 𝐴) → (∀𝑦 ∈ (𝐻 “ (𝐹 supp 0 ))𝑦 ≤ 𝐺 ↔ ∀𝑥 ∈ (𝐹 supp 0 )(𝐻‘𝑥) ≤ 𝐺)) |
29 | 21, 26, 28 | syl2anc 583 |
. . 3
⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) →
(∀𝑦 ∈ (𝐻 “ (𝐹 supp 0 ))𝑦 ≤ 𝐺 ↔ ∀𝑥 ∈ (𝐹 supp 0 )(𝐻‘𝑥) ≤ 𝐺)) |
30 | 25 | ffnd 6597 |
. . . . . . . 8
⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → 𝐹 Fn 𝐴) |
31 | 4 | fvexi 6782 |
. . . . . . . . 9
⊢ 0 ∈
V |
32 | 31 | a1i 11 |
. . . . . . . 8
⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → 0 ∈
V) |
33 | | elsuppfng 7970 |
. . . . . . . 8
⊢ ((𝐹 Fn 𝐴 ∧ 𝐹 ∈ 𝐵 ∧ 0 ∈ V) → (𝑥 ∈ (𝐹 supp 0 ) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ≠ 0 ))) |
34 | 30, 24, 32, 33 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → (𝑥 ∈ (𝐹 supp 0 ) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ≠ 0 ))) |
35 | | fvex 6781 |
. . . . . . . . . 10
⊢ (𝐹‘𝑥) ∈ V |
36 | 35 | biantrur 530 |
. . . . . . . . 9
⊢ ((𝐹‘𝑥) ≠ 0 ↔ ((𝐹‘𝑥) ∈ V ∧ (𝐹‘𝑥) ≠ 0 )) |
37 | | eldifsn 4725 |
. . . . . . . . 9
⊢ ((𝐹‘𝑥) ∈ (V ∖ { 0 }) ↔ ((𝐹‘𝑥) ∈ V ∧ (𝐹‘𝑥) ≠ 0 )) |
38 | 36, 37 | bitr4i 277 |
. . . . . . . 8
⊢ ((𝐹‘𝑥) ≠ 0 ↔ (𝐹‘𝑥) ∈ (V ∖ { 0 })) |
39 | 38 | anbi2i 622 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ≠ 0 ) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ (V ∖ { 0 }))) |
40 | 34, 39 | bitrdi 286 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → (𝑥 ∈ (𝐹 supp 0 ) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ (V ∖ { 0 })))) |
41 | 40 | imbi1d 341 |
. . . . 5
⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → ((𝑥 ∈ (𝐹 supp 0 ) → (𝐻‘𝑥) ≤ 𝐺) ↔ ((𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ (V ∖ { 0 })) → (𝐻‘𝑥) ≤ 𝐺))) |
42 | | impexp 450 |
. . . . . 6
⊢ (((𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ (V ∖ { 0 })) → (𝐻‘𝑥) ≤ 𝐺) ↔ (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) ∈ (V ∖ { 0 }) → (𝐻‘𝑥) ≤ 𝐺))) |
43 | | con34b 315 |
. . . . . . . 8
⊢ (((𝐹‘𝑥) ∈ (V ∖ { 0 }) → (𝐻‘𝑥) ≤ 𝐺) ↔ (¬ (𝐻‘𝑥) ≤ 𝐺 → ¬ (𝐹‘𝑥) ∈ (V ∖ { 0 }))) |
44 | | simplr 765 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) ∧ 𝑥 ∈ 𝐴) → 𝐺 ∈
ℝ*) |
45 | 12 | ffvelrnda 6955 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) ∧ 𝑥 ∈ 𝐴) → (𝐻‘𝑥) ∈
ℕ0) |
46 | 16, 45 | sselid 3923 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) ∧ 𝑥 ∈ 𝐴) → (𝐻‘𝑥) ∈
ℝ*) |
47 | | xrltnle 11026 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ ℝ*
∧ (𝐻‘𝑥) ∈ ℝ*)
→ (𝐺 < (𝐻‘𝑥) ↔ ¬ (𝐻‘𝑥) ≤ 𝐺)) |
48 | 44, 46, 47 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) ∧ 𝑥 ∈ 𝐴) → (𝐺 < (𝐻‘𝑥) ↔ ¬ (𝐻‘𝑥) ≤ 𝐺)) |
49 | 48 | bicomd 222 |
. . . . . . . . 9
⊢ (((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) ∧ 𝑥 ∈ 𝐴) → (¬ (𝐻‘𝑥) ≤ 𝐺 ↔ 𝐺 < (𝐻‘𝑥))) |
50 | | ianor 978 |
. . . . . . . . . . 11
⊢ (¬
((𝐹‘𝑥) ∈ V ∧ (𝐹‘𝑥) ≠ 0 ) ↔ (¬ (𝐹‘𝑥) ∈ V ∨ ¬ (𝐹‘𝑥) ≠ 0 )) |
51 | 50, 37 | xchnxbir 332 |
. . . . . . . . . 10
⊢ (¬
(𝐹‘𝑥) ∈ (V ∖ { 0 }) ↔ (¬ (𝐹‘𝑥) ∈ V ∨ ¬ (𝐹‘𝑥) ≠ 0 )) |
52 | | orcom 866 |
. . . . . . . . . . . 12
⊢ ((¬
(𝐹‘𝑥) ∈ V ∨ ¬ (𝐹‘𝑥) ≠ 0 ) ↔ (¬ (𝐹‘𝑥) ≠ 0 ∨ ¬ (𝐹‘𝑥) ∈ V)) |
53 | 35 | notnoti 143 |
. . . . . . . . . . . . 13
⊢ ¬
¬ (𝐹‘𝑥) ∈ V |
54 | 53 | biorfi 935 |
. . . . . . . . . . . 12
⊢ (¬
(𝐹‘𝑥) ≠ 0 ↔ (¬ (𝐹‘𝑥) ≠ 0 ∨ ¬ (𝐹‘𝑥) ∈ V)) |
55 | | nne 2948 |
. . . . . . . . . . . 12
⊢ (¬
(𝐹‘𝑥) ≠ 0 ↔ (𝐹‘𝑥) = 0 ) |
56 | 52, 54, 55 | 3bitr2i 298 |
. . . . . . . . . . 11
⊢ ((¬
(𝐹‘𝑥) ∈ V ∨ ¬ (𝐹‘𝑥) ≠ 0 ) ↔ (𝐹‘𝑥) = 0 ) |
57 | 56 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) ∧ 𝑥 ∈ 𝐴) → ((¬ (𝐹‘𝑥) ∈ V ∨ ¬ (𝐹‘𝑥) ≠ 0 ) ↔ (𝐹‘𝑥) = 0 )) |
58 | 51, 57 | syl5bb 282 |
. . . . . . . . 9
⊢ (((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) ∧ 𝑥 ∈ 𝐴) → (¬ (𝐹‘𝑥) ∈ (V ∖ { 0 }) ↔ (𝐹‘𝑥) = 0 )) |
59 | 49, 58 | imbi12d 344 |
. . . . . . . 8
⊢ (((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) ∧ 𝑥 ∈ 𝐴) → ((¬ (𝐻‘𝑥) ≤ 𝐺 → ¬ (𝐹‘𝑥) ∈ (V ∖ { 0 })) ↔ (𝐺 < (𝐻‘𝑥) → (𝐹‘𝑥) = 0 ))) |
60 | 43, 59 | syl5bb 282 |
. . . . . . 7
⊢ (((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) ∧ 𝑥 ∈ 𝐴) → (((𝐹‘𝑥) ∈ (V ∖ { 0 }) → (𝐻‘𝑥) ≤ 𝐺) ↔ (𝐺 < (𝐻‘𝑥) → (𝐹‘𝑥) = 0 ))) |
61 | 60 | pm5.74da 800 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → ((𝑥 ∈ 𝐴 → ((𝐹‘𝑥) ∈ (V ∖ { 0 }) → (𝐻‘𝑥) ≤ 𝐺)) ↔ (𝑥 ∈ 𝐴 → (𝐺 < (𝐻‘𝑥) → (𝐹‘𝑥) = 0 )))) |
62 | 42, 61 | syl5bb 282 |
. . . . 5
⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → (((𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ (V ∖ { 0 })) → (𝐻‘𝑥) ≤ 𝐺) ↔ (𝑥 ∈ 𝐴 → (𝐺 < (𝐻‘𝑥) → (𝐹‘𝑥) = 0 )))) |
63 | 41, 62 | bitrd 278 |
. . . 4
⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → ((𝑥 ∈ (𝐹 supp 0 ) → (𝐻‘𝑥) ≤ 𝐺) ↔ (𝑥 ∈ 𝐴 → (𝐺 < (𝐻‘𝑥) → (𝐹‘𝑥) = 0 )))) |
64 | 63 | ralbidv2 3120 |
. . 3
⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) →
(∀𝑥 ∈ (𝐹 supp 0 )(𝐻‘𝑥) ≤ 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐺 < (𝐻‘𝑥) → (𝐹‘𝑥) = 0 ))) |
65 | 29, 64 | bitrd 278 |
. 2
⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) →
(∀𝑦 ∈ (𝐻 “ (𝐹 supp 0 ))𝑦 ≤ 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐺 < (𝐻‘𝑥) → (𝐹‘𝑥) = 0 ))) |
66 | 9, 20, 65 | 3bitrd 304 |
1
⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → ((𝐷‘𝐹) ≤ 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐺 < (𝐻‘𝑥) → (𝐹‘𝑥) = 0 ))) |