Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegleb Structured version   Visualization version   GIF version

Theorem mdegleb 24650
 Description: Property of being of limited degree. (Contributed by Stefan O'Rear, 19-Mar-2015.)
Hypotheses
Ref Expression
mdegval.d 𝐷 = (𝐼 mDeg 𝑅)
mdegval.p 𝑃 = (𝐼 mPoly 𝑅)
mdegval.b 𝐵 = (Base‘𝑃)
mdegval.z 0 = (0g𝑅)
mdegval.a 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
mdegval.h 𝐻 = (𝐴 ↦ (ℂfld Σg ))
Assertion
Ref Expression
mdegleb ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝐷𝐹) ≤ 𝐺 ↔ ∀𝑥𝐴 (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 )))
Distinct variable groups:   𝐴,   𝑚,𝐼   0 ,   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝑥,𝐻   ,𝐼   𝑥,𝑅   𝑥, 0   ,𝑚
Allowed substitution hints:   𝐴(𝑚)   𝐵(,𝑚)   𝐷(𝑥,,𝑚)   𝑃(𝑥,,𝑚)   𝑅(,𝑚)   𝐹(,𝑚)   𝐺(,𝑚)   𝐻(,𝑚)   𝐼(𝑥)   0 (𝑚)

Proof of Theorem mdegleb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mdegval.d . . . . 5 𝐷 = (𝐼 mDeg 𝑅)
2 mdegval.p . . . . 5 𝑃 = (𝐼 mPoly 𝑅)
3 mdegval.b . . . . 5 𝐵 = (Base‘𝑃)
4 mdegval.z . . . . 5 0 = (0g𝑅)
5 mdegval.a . . . . 5 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
6 mdegval.h . . . . 5 𝐻 = (𝐴 ↦ (ℂfld Σg ))
71, 2, 3, 4, 5, 6mdegval 24649 . . . 4 (𝐹𝐵 → (𝐷𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ))
87adantr 483 . . 3 ((𝐹𝐵𝐺 ∈ ℝ*) → (𝐷𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ))
98breq1d 5067 . 2 ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝐷𝐹) ≤ 𝐺 ↔ sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ≤ 𝐺))
10 imassrn 5933 . . . 4 (𝐻 “ (𝐹 supp 0 )) ⊆ ran 𝐻
112, 3mplrcl 20262 . . . . . . . 8 (𝐹𝐵𝐼 ∈ V)
1211adantr 483 . . . . . . 7 ((𝐹𝐵𝐺 ∈ ℝ*) → 𝐼 ∈ V)
135, 6tdeglem1 24644 . . . . . . 7 (𝐼 ∈ V → 𝐻:𝐴⟶ℕ0)
1412, 13syl 17 . . . . . 6 ((𝐹𝐵𝐺 ∈ ℝ*) → 𝐻:𝐴⟶ℕ0)
1514frnd 6514 . . . . 5 ((𝐹𝐵𝐺 ∈ ℝ*) → ran 𝐻 ⊆ ℕ0)
16 nn0ssre 11893 . . . . . 6 0 ⊆ ℝ
17 ressxr 10677 . . . . . 6 ℝ ⊆ ℝ*
1816, 17sstri 3974 . . . . 5 0 ⊆ ℝ*
1915, 18sstrdi 3977 . . . 4 ((𝐹𝐵𝐺 ∈ ℝ*) → ran 𝐻 ⊆ ℝ*)
2010, 19sstrid 3976 . . 3 ((𝐹𝐵𝐺 ∈ ℝ*) → (𝐻 “ (𝐹 supp 0 )) ⊆ ℝ*)
21 supxrleub 12711 . . 3 (((𝐻 “ (𝐹 supp 0 )) ⊆ ℝ*𝐺 ∈ ℝ*) → (sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ≤ 𝐺 ↔ ∀𝑦 ∈ (𝐻 “ (𝐹 supp 0 ))𝑦𝐺))
2220, 21sylancom 590 . 2 ((𝐹𝐵𝐺 ∈ ℝ*) → (sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ≤ 𝐺 ↔ ∀𝑦 ∈ (𝐻 “ (𝐹 supp 0 ))𝑦𝐺))
2314ffnd 6508 . . . 4 ((𝐹𝐵𝐺 ∈ ℝ*) → 𝐻 Fn 𝐴)
24 suppssdm 7835 . . . . 5 (𝐹 supp 0 ) ⊆ dom 𝐹
25 eqid 2819 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
26 simpl 485 . . . . . 6 ((𝐹𝐵𝐺 ∈ ℝ*) → 𝐹𝐵)
272, 25, 3, 5, 26mplelf 20205 . . . . 5 ((𝐹𝐵𝐺 ∈ ℝ*) → 𝐹:𝐴⟶(Base‘𝑅))
2824, 27fssdm 6523 . . . 4 ((𝐹𝐵𝐺 ∈ ℝ*) → (𝐹 supp 0 ) ⊆ 𝐴)
29 breq1 5060 . . . . 5 (𝑦 = (𝐻𝑥) → (𝑦𝐺 ↔ (𝐻𝑥) ≤ 𝐺))
3029ralima 6992 . . . 4 ((𝐻 Fn 𝐴 ∧ (𝐹 supp 0 ) ⊆ 𝐴) → (∀𝑦 ∈ (𝐻 “ (𝐹 supp 0 ))𝑦𝐺 ↔ ∀𝑥 ∈ (𝐹 supp 0 )(𝐻𝑥) ≤ 𝐺))
3123, 28, 30syl2anc 586 . . 3 ((𝐹𝐵𝐺 ∈ ℝ*) → (∀𝑦 ∈ (𝐻 “ (𝐹 supp 0 ))𝑦𝐺 ↔ ∀𝑥 ∈ (𝐹 supp 0 )(𝐻𝑥) ≤ 𝐺))
3227ffnd 6508 . . . . . . 7 ((𝐹𝐵𝐺 ∈ ℝ*) → 𝐹 Fn 𝐴)
33 ovex 7181 . . . . . . . . . 10 (ℕ0m 𝐼) ∈ V
3433rabex 5226 . . . . . . . . 9 {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin} ∈ V
3534a1i 11 . . . . . . . 8 ((𝐹𝐵𝐺 ∈ ℝ*) → {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin} ∈ V)
365, 35eqeltrid 2915 . . . . . . 7 ((𝐹𝐵𝐺 ∈ ℝ*) → 𝐴 ∈ V)
374fvexi 6677 . . . . . . . 8 0 ∈ V
3837a1i 11 . . . . . . 7 ((𝐹𝐵𝐺 ∈ ℝ*) → 0 ∈ V)
39 elsuppfn 7830 . . . . . . . 8 ((𝐹 Fn 𝐴𝐴 ∈ V ∧ 0 ∈ V) → (𝑥 ∈ (𝐹 supp 0 ) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ≠ 0 )))
40 fvex 6676 . . . . . . . . . . . 12 (𝐹𝑥) ∈ V
4140biantrur 533 . . . . . . . . . . 11 ((𝐹𝑥) ≠ 0 ↔ ((𝐹𝑥) ∈ V ∧ (𝐹𝑥) ≠ 0 ))
42 eldifsn 4711 . . . . . . . . . . 11 ((𝐹𝑥) ∈ (V ∖ { 0 }) ↔ ((𝐹𝑥) ∈ V ∧ (𝐹𝑥) ≠ 0 ))
4341, 42bitr4i 280 . . . . . . . . . 10 ((𝐹𝑥) ≠ 0 ↔ (𝐹𝑥) ∈ (V ∖ { 0 }))
4443a1i 11 . . . . . . . . 9 ((𝐹 Fn 𝐴𝐴 ∈ V ∧ 0 ∈ V) → ((𝐹𝑥) ≠ 0 ↔ (𝐹𝑥) ∈ (V ∖ { 0 })))
4544anbi2d 630 . . . . . . . 8 ((𝐹 Fn 𝐴𝐴 ∈ V ∧ 0 ∈ V) → ((𝑥𝐴 ∧ (𝐹𝑥) ≠ 0 ) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ { 0 }))))
4639, 45bitrd 281 . . . . . . 7 ((𝐹 Fn 𝐴𝐴 ∈ V ∧ 0 ∈ V) → (𝑥 ∈ (𝐹 supp 0 ) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ { 0 }))))
4732, 36, 38, 46syl3anc 1365 . . . . . 6 ((𝐹𝐵𝐺 ∈ ℝ*) → (𝑥 ∈ (𝐹 supp 0 ) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ { 0 }))))
4847imbi1d 344 . . . . 5 ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝑥 ∈ (𝐹 supp 0 ) → (𝐻𝑥) ≤ 𝐺) ↔ ((𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ { 0 })) → (𝐻𝑥) ≤ 𝐺)))
49 impexp 453 . . . . . 6 (((𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ { 0 })) → (𝐻𝑥) ≤ 𝐺) ↔ (𝑥𝐴 → ((𝐹𝑥) ∈ (V ∖ { 0 }) → (𝐻𝑥) ≤ 𝐺)))
50 con34b 318 . . . . . . . 8 (((𝐹𝑥) ∈ (V ∖ { 0 }) → (𝐻𝑥) ≤ 𝐺) ↔ (¬ (𝐻𝑥) ≤ 𝐺 → ¬ (𝐹𝑥) ∈ (V ∖ { 0 })))
51 simplr 767 . . . . . . . . . . 11 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → 𝐺 ∈ ℝ*)
5214ffvelrnda 6844 . . . . . . . . . . . 12 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → (𝐻𝑥) ∈ ℕ0)
5318, 52sseldi 3963 . . . . . . . . . . 11 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → (𝐻𝑥) ∈ ℝ*)
54 xrltnle 10700 . . . . . . . . . . 11 ((𝐺 ∈ ℝ* ∧ (𝐻𝑥) ∈ ℝ*) → (𝐺 < (𝐻𝑥) ↔ ¬ (𝐻𝑥) ≤ 𝐺))
5551, 53, 54syl2anc 586 . . . . . . . . . 10 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → (𝐺 < (𝐻𝑥) ↔ ¬ (𝐻𝑥) ≤ 𝐺))
5655bicomd 225 . . . . . . . . 9 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → (¬ (𝐻𝑥) ≤ 𝐺𝐺 < (𝐻𝑥)))
57 ianor 977 . . . . . . . . . . 11 (¬ ((𝐹𝑥) ∈ V ∧ (𝐹𝑥) ≠ 0 ) ↔ (¬ (𝐹𝑥) ∈ V ∨ ¬ (𝐹𝑥) ≠ 0 ))
5857, 42xchnxbir 335 . . . . . . . . . 10 (¬ (𝐹𝑥) ∈ (V ∖ { 0 }) ↔ (¬ (𝐹𝑥) ∈ V ∨ ¬ (𝐹𝑥) ≠ 0 ))
59 orcom 866 . . . . . . . . . . . 12 ((¬ (𝐹𝑥) ∈ V ∨ ¬ (𝐹𝑥) ≠ 0 ) ↔ (¬ (𝐹𝑥) ≠ 0 ∨ ¬ (𝐹𝑥) ∈ V))
6040notnoti 145 . . . . . . . . . . . . 13 ¬ ¬ (𝐹𝑥) ∈ V
6160biorfi 934 . . . . . . . . . . . 12 (¬ (𝐹𝑥) ≠ 0 ↔ (¬ (𝐹𝑥) ≠ 0 ∨ ¬ (𝐹𝑥) ∈ V))
62 nne 3018 . . . . . . . . . . . 12 (¬ (𝐹𝑥) ≠ 0 ↔ (𝐹𝑥) = 0 )
6359, 61, 623bitr2i 301 . . . . . . . . . . 11 ((¬ (𝐹𝑥) ∈ V ∨ ¬ (𝐹𝑥) ≠ 0 ) ↔ (𝐹𝑥) = 0 )
6463a1i 11 . . . . . . . . . 10 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → ((¬ (𝐹𝑥) ∈ V ∨ ¬ (𝐹𝑥) ≠ 0 ) ↔ (𝐹𝑥) = 0 ))
6558, 64syl5bb 285 . . . . . . . . 9 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → (¬ (𝐹𝑥) ∈ (V ∖ { 0 }) ↔ (𝐹𝑥) = 0 ))
6656, 65imbi12d 347 . . . . . . . 8 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → ((¬ (𝐻𝑥) ≤ 𝐺 → ¬ (𝐹𝑥) ∈ (V ∖ { 0 })) ↔ (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 )))
6750, 66syl5bb 285 . . . . . . 7 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → (((𝐹𝑥) ∈ (V ∖ { 0 }) → (𝐻𝑥) ≤ 𝐺) ↔ (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 )))
6867pm5.74da 802 . . . . . 6 ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝑥𝐴 → ((𝐹𝑥) ∈ (V ∖ { 0 }) → (𝐻𝑥) ≤ 𝐺)) ↔ (𝑥𝐴 → (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 ))))
6949, 68syl5bb 285 . . . . 5 ((𝐹𝐵𝐺 ∈ ℝ*) → (((𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ { 0 })) → (𝐻𝑥) ≤ 𝐺) ↔ (𝑥𝐴 → (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 ))))
7048, 69bitrd 281 . . . 4 ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝑥 ∈ (𝐹 supp 0 ) → (𝐻𝑥) ≤ 𝐺) ↔ (𝑥𝐴 → (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 ))))
7170ralbidv2 3193 . . 3 ((𝐹𝐵𝐺 ∈ ℝ*) → (∀𝑥 ∈ (𝐹 supp 0 )(𝐻𝑥) ≤ 𝐺 ↔ ∀𝑥𝐴 (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 )))
7231, 71bitrd 281 . 2 ((𝐹𝐵𝐺 ∈ ℝ*) → (∀𝑦 ∈ (𝐻 “ (𝐹 supp 0 ))𝑦𝐺 ↔ ∀𝑥𝐴 (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 )))
739, 22, 723bitrd 307 1 ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝐷𝐹) ≤ 𝐺 ↔ ∀𝑥𝐴 (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 )))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 208   ∧ wa 398   ∨ wo 843   ∧ w3a 1081   = wceq 1530   ∈ wcel 2107   ≠ wne 3014  ∀wral 3136  {crab 3140  Vcvv 3493   ∖ cdif 3931   ⊆ wss 3934  {csn 4559   class class class wbr 5057   ↦ cmpt 5137  ◡ccnv 5547  ran crn 5549   “ cima 5551   Fn wfn 6343  ⟶wf 6344  ‘cfv 6348  (class class class)co 7148   supp csupp 7822   ↑m cmap 8398  Fincfn 8501  supcsup 8896  ℝcr 10528  ℝ*cxr 10666   < clt 10667   ≤ cle 10668  ℕcn 11630  ℕ0cn0 11889  Basecbs 16475  0gc0g 16705   Σg cgsu 16706   mPoly cmpl 20125  ℂfldccnfld 20537   mDeg cmdg 24639 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-sup 8898  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12885  df-fzo 13026  df-seq 13362  df-hash 13683  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-0g 16707  df-gsum 16708  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19232  df-ur 19244  df-ring 19291  df-cring 19292  df-psr 20128  df-mpl 20130  df-cnfld 20538  df-mdeg 24641 This theorem is referenced by:  mdeglt  24651  mdegaddle  24660  mdegvscale  24661  mdegle0  24663  mdegmullem  24664  deg1leb  24681
 Copyright terms: Public domain W3C validator