MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegleb Structured version   Visualization version   GIF version

Theorem mdegleb 26117
Description: Property of being of limited degree. (Contributed by Stefan O'Rear, 19-Mar-2015.)
Hypotheses
Ref Expression
mdegval.d 𝐷 = (𝐼 mDeg 𝑅)
mdegval.p 𝑃 = (𝐼 mPoly 𝑅)
mdegval.b 𝐵 = (Base‘𝑃)
mdegval.z 0 = (0g𝑅)
mdegval.a 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
mdegval.h 𝐻 = (𝐴 ↦ (ℂfld Σg ))
Assertion
Ref Expression
mdegleb ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝐷𝐹) ≤ 𝐺 ↔ ∀𝑥𝐴 (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 )))
Distinct variable groups:   𝐴,   𝑚,𝐼   0 ,   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝑥,𝐻   ,𝐼   𝑥,𝑅   𝑥, 0   ,𝑚
Allowed substitution hints:   𝐴(𝑥,𝑚)   𝐵(,𝑚)   𝐷(𝑥,,𝑚)   𝑃(𝑥,,𝑚)   𝑅(,𝑚)   𝐹(,𝑚)   𝐺(,𝑚)   𝐻(,𝑚)   𝐼(𝑥)   0 (𝑚)

Proof of Theorem mdegleb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mdegval.d . . . . 5 𝐷 = (𝐼 mDeg 𝑅)
2 mdegval.p . . . . 5 𝑃 = (𝐼 mPoly 𝑅)
3 mdegval.b . . . . 5 𝐵 = (Base‘𝑃)
4 mdegval.z . . . . 5 0 = (0g𝑅)
5 mdegval.a . . . . 5 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
6 mdegval.h . . . . 5 𝐻 = (𝐴 ↦ (ℂfld Σg ))
71, 2, 3, 4, 5, 6mdegval 26116 . . . 4 (𝐹𝐵 → (𝐷𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ))
87adantr 480 . . 3 ((𝐹𝐵𝐺 ∈ ℝ*) → (𝐷𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ))
98breq1d 5157 . 2 ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝐷𝐹) ≤ 𝐺 ↔ sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ≤ 𝐺))
10 imassrn 6090 . . . 4 (𝐻 “ (𝐹 supp 0 )) ⊆ ran 𝐻
115, 6tdeglem1 26111 . . . . . . 7 𝐻:𝐴⟶ℕ0
1211a1i 11 . . . . . 6 ((𝐹𝐵𝐺 ∈ ℝ*) → 𝐻:𝐴⟶ℕ0)
1312frnd 6744 . . . . 5 ((𝐹𝐵𝐺 ∈ ℝ*) → ran 𝐻 ⊆ ℕ0)
14 nn0ssre 12527 . . . . . 6 0 ⊆ ℝ
15 ressxr 11302 . . . . . 6 ℝ ⊆ ℝ*
1614, 15sstri 4004 . . . . 5 0 ⊆ ℝ*
1713, 16sstrdi 4007 . . . 4 ((𝐹𝐵𝐺 ∈ ℝ*) → ran 𝐻 ⊆ ℝ*)
1810, 17sstrid 4006 . . 3 ((𝐹𝐵𝐺 ∈ ℝ*) → (𝐻 “ (𝐹 supp 0 )) ⊆ ℝ*)
19 supxrleub 13364 . . 3 (((𝐻 “ (𝐹 supp 0 )) ⊆ ℝ*𝐺 ∈ ℝ*) → (sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ≤ 𝐺 ↔ ∀𝑦 ∈ (𝐻 “ (𝐹 supp 0 ))𝑦𝐺))
2018, 19sylancom 588 . 2 ((𝐹𝐵𝐺 ∈ ℝ*) → (sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ≤ 𝐺 ↔ ∀𝑦 ∈ (𝐻 “ (𝐹 supp 0 ))𝑦𝐺))
2112ffnd 6737 . . . 4 ((𝐹𝐵𝐺 ∈ ℝ*) → 𝐻 Fn 𝐴)
22 suppssdm 8200 . . . . 5 (𝐹 supp 0 ) ⊆ dom 𝐹
23 eqid 2734 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
24 simpl 482 . . . . . 6 ((𝐹𝐵𝐺 ∈ ℝ*) → 𝐹𝐵)
252, 23, 3, 5, 24mplelf 22035 . . . . 5 ((𝐹𝐵𝐺 ∈ ℝ*) → 𝐹:𝐴⟶(Base‘𝑅))
2622, 25fssdm 6755 . . . 4 ((𝐹𝐵𝐺 ∈ ℝ*) → (𝐹 supp 0 ) ⊆ 𝐴)
27 breq1 5150 . . . . 5 (𝑦 = (𝐻𝑥) → (𝑦𝐺 ↔ (𝐻𝑥) ≤ 𝐺))
2827ralima 7256 . . . 4 ((𝐻 Fn 𝐴 ∧ (𝐹 supp 0 ) ⊆ 𝐴) → (∀𝑦 ∈ (𝐻 “ (𝐹 supp 0 ))𝑦𝐺 ↔ ∀𝑥 ∈ (𝐹 supp 0 )(𝐻𝑥) ≤ 𝐺))
2921, 26, 28syl2anc 584 . . 3 ((𝐹𝐵𝐺 ∈ ℝ*) → (∀𝑦 ∈ (𝐻 “ (𝐹 supp 0 ))𝑦𝐺 ↔ ∀𝑥 ∈ (𝐹 supp 0 )(𝐻𝑥) ≤ 𝐺))
3025ffnd 6737 . . . . . . . 8 ((𝐹𝐵𝐺 ∈ ℝ*) → 𝐹 Fn 𝐴)
314fvexi 6920 . . . . . . . . 9 0 ∈ V
3231a1i 11 . . . . . . . 8 ((𝐹𝐵𝐺 ∈ ℝ*) → 0 ∈ V)
33 elsuppfng 8192 . . . . . . . 8 ((𝐹 Fn 𝐴𝐹𝐵0 ∈ V) → (𝑥 ∈ (𝐹 supp 0 ) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ≠ 0 )))
3430, 24, 32, 33syl3anc 1370 . . . . . . 7 ((𝐹𝐵𝐺 ∈ ℝ*) → (𝑥 ∈ (𝐹 supp 0 ) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ≠ 0 )))
35 fvex 6919 . . . . . . . . . 10 (𝐹𝑥) ∈ V
3635biantrur 530 . . . . . . . . 9 ((𝐹𝑥) ≠ 0 ↔ ((𝐹𝑥) ∈ V ∧ (𝐹𝑥) ≠ 0 ))
37 eldifsn 4790 . . . . . . . . 9 ((𝐹𝑥) ∈ (V ∖ { 0 }) ↔ ((𝐹𝑥) ∈ V ∧ (𝐹𝑥) ≠ 0 ))
3836, 37bitr4i 278 . . . . . . . 8 ((𝐹𝑥) ≠ 0 ↔ (𝐹𝑥) ∈ (V ∖ { 0 }))
3938anbi2i 623 . . . . . . 7 ((𝑥𝐴 ∧ (𝐹𝑥) ≠ 0 ) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ { 0 })))
4034, 39bitrdi 287 . . . . . 6 ((𝐹𝐵𝐺 ∈ ℝ*) → (𝑥 ∈ (𝐹 supp 0 ) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ { 0 }))))
4140imbi1d 341 . . . . 5 ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝑥 ∈ (𝐹 supp 0 ) → (𝐻𝑥) ≤ 𝐺) ↔ ((𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ { 0 })) → (𝐻𝑥) ≤ 𝐺)))
42 impexp 450 . . . . . 6 (((𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ { 0 })) → (𝐻𝑥) ≤ 𝐺) ↔ (𝑥𝐴 → ((𝐹𝑥) ∈ (V ∖ { 0 }) → (𝐻𝑥) ≤ 𝐺)))
43 con34b 316 . . . . . . . 8 (((𝐹𝑥) ∈ (V ∖ { 0 }) → (𝐻𝑥) ≤ 𝐺) ↔ (¬ (𝐻𝑥) ≤ 𝐺 → ¬ (𝐹𝑥) ∈ (V ∖ { 0 })))
44 simplr 769 . . . . . . . . . . 11 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → 𝐺 ∈ ℝ*)
4512ffvelcdmda 7103 . . . . . . . . . . . 12 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → (𝐻𝑥) ∈ ℕ0)
4616, 45sselid 3992 . . . . . . . . . . 11 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → (𝐻𝑥) ∈ ℝ*)
47 xrltnle 11325 . . . . . . . . . . 11 ((𝐺 ∈ ℝ* ∧ (𝐻𝑥) ∈ ℝ*) → (𝐺 < (𝐻𝑥) ↔ ¬ (𝐻𝑥) ≤ 𝐺))
4844, 46, 47syl2anc 584 . . . . . . . . . 10 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → (𝐺 < (𝐻𝑥) ↔ ¬ (𝐻𝑥) ≤ 𝐺))
4948bicomd 223 . . . . . . . . 9 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → (¬ (𝐻𝑥) ≤ 𝐺𝐺 < (𝐻𝑥)))
50 ianor 983 . . . . . . . . . . 11 (¬ ((𝐹𝑥) ∈ V ∧ (𝐹𝑥) ≠ 0 ) ↔ (¬ (𝐹𝑥) ∈ V ∨ ¬ (𝐹𝑥) ≠ 0 ))
5150, 37xchnxbir 333 . . . . . . . . . 10 (¬ (𝐹𝑥) ∈ (V ∖ { 0 }) ↔ (¬ (𝐹𝑥) ∈ V ∨ ¬ (𝐹𝑥) ≠ 0 ))
52 orcom 870 . . . . . . . . . . . 12 ((¬ (𝐹𝑥) ∈ V ∨ ¬ (𝐹𝑥) ≠ 0 ) ↔ (¬ (𝐹𝑥) ≠ 0 ∨ ¬ (𝐹𝑥) ∈ V))
5335notnoti 143 . . . . . . . . . . . . 13 ¬ ¬ (𝐹𝑥) ∈ V
5453biorfri 939 . . . . . . . . . . . 12 (¬ (𝐹𝑥) ≠ 0 ↔ (¬ (𝐹𝑥) ≠ 0 ∨ ¬ (𝐹𝑥) ∈ V))
55 nne 2941 . . . . . . . . . . . 12 (¬ (𝐹𝑥) ≠ 0 ↔ (𝐹𝑥) = 0 )
5652, 54, 553bitr2i 299 . . . . . . . . . . 11 ((¬ (𝐹𝑥) ∈ V ∨ ¬ (𝐹𝑥) ≠ 0 ) ↔ (𝐹𝑥) = 0 )
5756a1i 11 . . . . . . . . . 10 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → ((¬ (𝐹𝑥) ∈ V ∨ ¬ (𝐹𝑥) ≠ 0 ) ↔ (𝐹𝑥) = 0 ))
5851, 57bitrid 283 . . . . . . . . 9 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → (¬ (𝐹𝑥) ∈ (V ∖ { 0 }) ↔ (𝐹𝑥) = 0 ))
5949, 58imbi12d 344 . . . . . . . 8 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → ((¬ (𝐻𝑥) ≤ 𝐺 → ¬ (𝐹𝑥) ∈ (V ∖ { 0 })) ↔ (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 )))
6043, 59bitrid 283 . . . . . . 7 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑥𝐴) → (((𝐹𝑥) ∈ (V ∖ { 0 }) → (𝐻𝑥) ≤ 𝐺) ↔ (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 )))
6160pm5.74da 804 . . . . . 6 ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝑥𝐴 → ((𝐹𝑥) ∈ (V ∖ { 0 }) → (𝐻𝑥) ≤ 𝐺)) ↔ (𝑥𝐴 → (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 ))))
6242, 61bitrid 283 . . . . 5 ((𝐹𝐵𝐺 ∈ ℝ*) → (((𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ { 0 })) → (𝐻𝑥) ≤ 𝐺) ↔ (𝑥𝐴 → (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 ))))
6341, 62bitrd 279 . . . 4 ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝑥 ∈ (𝐹 supp 0 ) → (𝐻𝑥) ≤ 𝐺) ↔ (𝑥𝐴 → (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 ))))
6463ralbidv2 3171 . . 3 ((𝐹𝐵𝐺 ∈ ℝ*) → (∀𝑥 ∈ (𝐹 supp 0 )(𝐻𝑥) ≤ 𝐺 ↔ ∀𝑥𝐴 (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 )))
6529, 64bitrd 279 . 2 ((𝐹𝐵𝐺 ∈ ℝ*) → (∀𝑦 ∈ (𝐻 “ (𝐹 supp 0 ))𝑦𝐺 ↔ ∀𝑥𝐴 (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 )))
669, 20, 653bitrd 305 1 ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝐷𝐹) ≤ 𝐺 ↔ ∀𝑥𝐴 (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1536  wcel 2105  wne 2937  wral 3058  {crab 3432  Vcvv 3477  cdif 3959  wss 3962  {csn 4630   class class class wbr 5147  cmpt 5230  ccnv 5687  ran crn 5689  cima 5691   Fn wfn 6557  wf 6558  cfv 6562  (class class class)co 7430   supp csupp 8183  m cmap 8864  Fincfn 8983  supcsup 9477  cr 11151  *cxr 11291   < clt 11292  cle 11293  cn 12263  0cn0 12523  Basecbs 17244  0gc0g 17485   Σg cgsu 17486  fldccnfld 21381   mPoly cmpl 21943   mDeg cmdg 26106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-sup 9479  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-fz 13544  df-fzo 13691  df-seq 14039  df-hash 14366  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-0g 17487  df-gsum 17488  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-grp 18966  df-minusg 18967  df-cntz 19347  df-cmn 19814  df-abl 19815  df-mgp 20152  df-ur 20199  df-ring 20252  df-cring 20253  df-cnfld 21382  df-psr 21946  df-mpl 21948  df-mdeg 26108
This theorem is referenced by:  mdeglt  26118  mdegaddle  26127  mdegvscale  26128  mdegle0  26130  mdegmullem  26131  deg1leb  26148
  Copyright terms: Public domain W3C validator