MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  notnot Structured version   Visualization version   GIF version

Theorem notnot 142
Description: Double negation introduction. Converse of notnotr 130 and one implication of notnotb 315. Theorem *2.12 of [WhiteheadRussell] p. 101. This was the sixth axiom of Frege, specifically Proposition 41 of [Frege1879] p. 47. (Contributed by NM, 28-Dec-1992.) (Proof shortened by Wolf Lammen, 2-Mar-2013.)
Assertion
Ref Expression
notnot (𝜑 → ¬ ¬ 𝜑)

Proof of Theorem notnot
StepHypRef Expression
1 id 22 . 2 𝜑 → ¬ 𝜑)
21con2i 139 1 (𝜑 → ¬ ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  notnoti  143  notnotd  144  con1d  145  notnotb  315  pm2.13  896  biortn  936  necon2ad  2961  necon4ad  2965  necon4ai  2978  eueq2  3732  ifnot  4600  spthcycl  35097  knoppndvlem10  36487  wl-orel12  37465  cnfn1dd  38052  cnfn2dd  38053  axfrege41  43806  vk15.4j  44499  zfregs2VD  44812  vk15.4jVD  44885  con3ALTVD  44887  stoweidlem39  45960
  Copyright terms: Public domain W3C validator