MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnul2OLD Structured version   Visualization version   GIF version

Theorem dfnul2OLD 4357
Description: Obsolete version of dfnul2 4355 as of 23-Sep-2024. (Contributed by NM, 26-Dec-1996.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dfnul2OLD ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥}

Proof of Theorem dfnul2OLD
StepHypRef Expression
1 df-nul 4353 . 2 ∅ = (V ∖ V)
2 df-dif 3979 . 2 (V ∖ V) = {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V)}
3 pm3.24 402 . . . 4 ¬ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V)
4 equid 2011 . . . . 5 𝑥 = 𝑥
54notnoti 143 . . . 4 ¬ ¬ 𝑥 = 𝑥
63, 52false 375 . . 3 ((𝑥 ∈ V ∧ ¬ 𝑥 ∈ V) ↔ ¬ 𝑥 = 𝑥)
76abbii 2812 . 2 {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V)} = {𝑥 ∣ ¬ 𝑥 = 𝑥}
81, 2, 73eqtri 2772 1 ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1537  wcel 2108  {cab 2717  Vcvv 3488  cdif 3973  c0 4352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-dif 3979  df-nul 4353
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator