Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oplem1 | Structured version Visualization version GIF version |
Description: A specialized lemma for set theory (ordered pair theorem). (Contributed by NM, 18-Oct-1995.) (Proof shortened by Wolf Lammen, 8-Dec-2012.) |
Ref | Expression |
---|---|
oplem1.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
oplem1.2 | ⊢ (𝜑 → (𝜃 ∨ 𝜏)) |
oplem1.3 | ⊢ (𝜓 ↔ 𝜃) |
oplem1.4 | ⊢ (𝜒 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
oplem1 | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oplem1.3 | . . . . . . 7 ⊢ (𝜓 ↔ 𝜃) | |
2 | 1 | notbii 320 | . . . . . 6 ⊢ (¬ 𝜓 ↔ ¬ 𝜃) |
3 | oplem1.1 | . . . . . . 7 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
4 | 3 | ord 861 | . . . . . 6 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
5 | 2, 4 | syl5bir 242 | . . . . 5 ⊢ (𝜑 → (¬ 𝜃 → 𝜒)) |
6 | oplem1.2 | . . . . . 6 ⊢ (𝜑 → (𝜃 ∨ 𝜏)) | |
7 | 6 | ord 861 | . . . . 5 ⊢ (𝜑 → (¬ 𝜃 → 𝜏)) |
8 | 5, 7 | jcad 513 | . . . 4 ⊢ (𝜑 → (¬ 𝜃 → (𝜒 ∧ 𝜏))) |
9 | oplem1.4 | . . . . 5 ⊢ (𝜒 → (𝜃 ↔ 𝜏)) | |
10 | 9 | biimpar 478 | . . . 4 ⊢ ((𝜒 ∧ 𝜏) → 𝜃) |
11 | 8, 10 | syl6 35 | . . 3 ⊢ (𝜑 → (¬ 𝜃 → 𝜃)) |
12 | 11 | pm2.18d 127 | . 2 ⊢ (𝜑 → 𝜃) |
13 | 12, 1 | sylibr 233 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 |
This theorem is referenced by: preq1b 4777 |
Copyright terms: Public domain | W3C validator |