Proof of Theorem preq1b
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | preq1b.a | . . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| 2 |  | prid1g 4759 | . . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐶}) | 
| 3 | 1, 2 | syl 17 | . . . . . . 7
⊢ (𝜑 → 𝐴 ∈ {𝐴, 𝐶}) | 
| 4 |  | eleq2 2829 | . . . . . . 7
⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐴 ∈ {𝐴, 𝐶} ↔ 𝐴 ∈ {𝐵, 𝐶})) | 
| 5 | 3, 4 | syl5ibcom 245 | . . . . . 6
⊢ (𝜑 → ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 ∈ {𝐵, 𝐶})) | 
| 6 |  | elprg 4647 | . . . . . . 7
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | 
| 7 | 1, 6 | syl 17 | . . . . . 6
⊢ (𝜑 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | 
| 8 | 5, 7 | sylibd 239 | . . . . 5
⊢ (𝜑 → ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | 
| 9 | 8 | imp 406 | . . . 4
⊢ ((𝜑 ∧ {𝐴, 𝐶} = {𝐵, 𝐶}) → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | 
| 10 |  | preq1b.b | . . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ 𝑊) | 
| 11 |  | prid1g 4759 | . . . . . . . 8
⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ {𝐵, 𝐶}) | 
| 12 | 10, 11 | syl 17 | . . . . . . 7
⊢ (𝜑 → 𝐵 ∈ {𝐵, 𝐶}) | 
| 13 |  | eleq2 2829 | . . . . . . 7
⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐵 ∈ {𝐴, 𝐶} ↔ 𝐵 ∈ {𝐵, 𝐶})) | 
| 14 | 12, 13 | syl5ibrcom 247 | . . . . . 6
⊢ (𝜑 → ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐵 ∈ {𝐴, 𝐶})) | 
| 15 |  | elprg 4647 | . . . . . . 7
⊢ (𝐵 ∈ 𝑊 → (𝐵 ∈ {𝐴, 𝐶} ↔ (𝐵 = 𝐴 ∨ 𝐵 = 𝐶))) | 
| 16 | 10, 15 | syl 17 | . . . . . 6
⊢ (𝜑 → (𝐵 ∈ {𝐴, 𝐶} ↔ (𝐵 = 𝐴 ∨ 𝐵 = 𝐶))) | 
| 17 | 14, 16 | sylibd 239 | . . . . 5
⊢ (𝜑 → ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐵 = 𝐴 ∨ 𝐵 = 𝐶))) | 
| 18 | 17 | imp 406 | . . . 4
⊢ ((𝜑 ∧ {𝐴, 𝐶} = {𝐵, 𝐶}) → (𝐵 = 𝐴 ∨ 𝐵 = 𝐶)) | 
| 19 |  | eqcom 2743 | . . . 4
⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | 
| 20 |  | eqeq2 2748 | . . . 4
⊢ (𝐴 = 𝐶 → (𝐵 = 𝐴 ↔ 𝐵 = 𝐶)) | 
| 21 | 9, 18, 19, 20 | oplem1 1056 | . . 3
⊢ ((𝜑 ∧ {𝐴, 𝐶} = {𝐵, 𝐶}) → 𝐴 = 𝐵) | 
| 22 | 21 | ex 412 | . 2
⊢ (𝜑 → ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵)) | 
| 23 |  | preq1 4732 | . 2
⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) | 
| 24 | 22, 23 | impbid1 225 | 1
⊢ (𝜑 → ({𝐴, 𝐶} = {𝐵, 𝐶} ↔ 𝐴 = 𝐵)) |