Proof of Theorem preq1b
Step | Hyp | Ref
| Expression |
1 | | preq1b.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
2 | | prid1g 4693 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐶}) |
3 | 1, 2 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ {𝐴, 𝐶}) |
4 | | eleq2 2827 |
. . . . . . 7
⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐴 ∈ {𝐴, 𝐶} ↔ 𝐴 ∈ {𝐵, 𝐶})) |
5 | 3, 4 | syl5ibcom 244 |
. . . . . 6
⊢ (𝜑 → ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 ∈ {𝐵, 𝐶})) |
6 | | elprg 4579 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
7 | 1, 6 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
8 | 5, 7 | sylibd 238 |
. . . . 5
⊢ (𝜑 → ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
9 | 8 | imp 406 |
. . . 4
⊢ ((𝜑 ∧ {𝐴, 𝐶} = {𝐵, 𝐶}) → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
10 | | preq1b.b |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
11 | | prid1g 4693 |
. . . . . . . 8
⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ {𝐵, 𝐶}) |
12 | 10, 11 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ {𝐵, 𝐶}) |
13 | | eleq2 2827 |
. . . . . . 7
⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐵 ∈ {𝐴, 𝐶} ↔ 𝐵 ∈ {𝐵, 𝐶})) |
14 | 12, 13 | syl5ibrcom 246 |
. . . . . 6
⊢ (𝜑 → ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐵 ∈ {𝐴, 𝐶})) |
15 | | elprg 4579 |
. . . . . . 7
⊢ (𝐵 ∈ 𝑊 → (𝐵 ∈ {𝐴, 𝐶} ↔ (𝐵 = 𝐴 ∨ 𝐵 = 𝐶))) |
16 | 10, 15 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐵 ∈ {𝐴, 𝐶} ↔ (𝐵 = 𝐴 ∨ 𝐵 = 𝐶))) |
17 | 14, 16 | sylibd 238 |
. . . . 5
⊢ (𝜑 → ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐵 = 𝐴 ∨ 𝐵 = 𝐶))) |
18 | 17 | imp 406 |
. . . 4
⊢ ((𝜑 ∧ {𝐴, 𝐶} = {𝐵, 𝐶}) → (𝐵 = 𝐴 ∨ 𝐵 = 𝐶)) |
19 | | eqcom 2745 |
. . . 4
⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) |
20 | | eqeq2 2750 |
. . . 4
⊢ (𝐴 = 𝐶 → (𝐵 = 𝐴 ↔ 𝐵 = 𝐶)) |
21 | 9, 18, 19, 20 | oplem1 1053 |
. . 3
⊢ ((𝜑 ∧ {𝐴, 𝐶} = {𝐵, 𝐶}) → 𝐴 = 𝐵) |
22 | 21 | ex 412 |
. 2
⊢ (𝜑 → ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵)) |
23 | | preq1 4666 |
. 2
⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) |
24 | 22, 23 | impbid1 224 |
1
⊢ (𝜑 → ({𝐴, 𝐶} = {𝐵, 𝐶} ↔ 𝐴 = 𝐵)) |