Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dn1 | Structured version Visualization version GIF version |
Description: A single axiom for Boolean algebra known as DN1. See McCune, Veroff, Fitelson, Harris, Feist, Wos, Short single axioms for Boolean algebra, Journal of Automated Reasoning, 29(1):1--16, 2002. (https://www.cs.unm.edu/~mccune/papers/basax/v12.pdf). (Contributed by Jeff Hankins, 3-Jul-2009.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 6-Jan-2013.) |
Ref | Expression |
---|---|
dn1 | ⊢ (¬ (¬ (¬ (𝜑 ∨ 𝜓) ∨ 𝜒) ∨ ¬ (𝜑 ∨ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃)))) ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.45 878 | . . . . 5 ⊢ (¬ (𝜑 ∨ 𝜓) → ¬ 𝜑) | |
2 | imnan 399 | . . . . 5 ⊢ ((¬ (𝜑 ∨ 𝜓) → ¬ 𝜑) ↔ ¬ (¬ (𝜑 ∨ 𝜓) ∧ 𝜑)) | |
3 | 1, 2 | mpbi 229 | . . . 4 ⊢ ¬ (¬ (𝜑 ∨ 𝜓) ∧ 𝜑) |
4 | 3 | biorfi 935 | . . 3 ⊢ (𝜒 ↔ (𝜒 ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝜑))) |
5 | orcom 866 | . . 3 ⊢ ((𝜒 ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝜑)) ↔ ((¬ (𝜑 ∨ 𝜓) ∧ 𝜑) ∨ 𝜒)) | |
6 | ordir 1003 | . . 3 ⊢ (((¬ (𝜑 ∨ 𝜓) ∧ 𝜑) ∨ 𝜒) ↔ ((¬ (𝜑 ∨ 𝜓) ∨ 𝜒) ∧ (𝜑 ∨ 𝜒))) | |
7 | 4, 5, 6 | 3bitri 296 | . 2 ⊢ (𝜒 ↔ ((¬ (𝜑 ∨ 𝜓) ∨ 𝜒) ∧ (𝜑 ∨ 𝜒))) |
8 | pm4.45 994 | . . . . 5 ⊢ (𝜒 ↔ (𝜒 ∧ (𝜒 ∨ 𝜃))) | |
9 | anor 979 | . . . . 5 ⊢ ((𝜒 ∧ (𝜒 ∨ 𝜃)) ↔ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃))) | |
10 | 8, 9 | bitri 274 | . . . 4 ⊢ (𝜒 ↔ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃))) |
11 | 10 | orbi2i 909 | . . 3 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜑 ∨ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃)))) |
12 | 11 | anbi2i 622 | . 2 ⊢ (((¬ (𝜑 ∨ 𝜓) ∨ 𝜒) ∧ (𝜑 ∨ 𝜒)) ↔ ((¬ (𝜑 ∨ 𝜓) ∨ 𝜒) ∧ (𝜑 ∨ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃))))) |
13 | anor 979 | . 2 ⊢ (((¬ (𝜑 ∨ 𝜓) ∨ 𝜒) ∧ (𝜑 ∨ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃)))) ↔ ¬ (¬ (¬ (𝜑 ∨ 𝜓) ∨ 𝜒) ∨ ¬ (𝜑 ∨ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃))))) | |
14 | 7, 12, 13 | 3bitrri 297 | 1 ⊢ (¬ (¬ (¬ (𝜑 ∨ 𝜓) ∨ 𝜒) ∨ ¬ (𝜑 ∨ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃)))) ↔ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |