Proof of Theorem dn1
Step | Hyp | Ref
| Expression |
1 | | pm2.45 879 |
. . . . 5
⊢ (¬
(𝜑 ∨ 𝜓) → ¬ 𝜑) |
2 | | imnan 403 |
. . . . 5
⊢ ((¬
(𝜑 ∨ 𝜓) → ¬ 𝜑) ↔ ¬ (¬ (𝜑 ∨ 𝜓) ∧ 𝜑)) |
3 | 1, 2 | mpbi 233 |
. . . 4
⊢ ¬
(¬ (𝜑 ∨ 𝜓) ∧ 𝜑) |
4 | 3 | biorfi 936 |
. . 3
⊢ (𝜒 ↔ (𝜒 ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝜑))) |
5 | | orcom 867 |
. . . 4
⊢ ((𝜒 ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝜑)) ↔ ((¬ (𝜑 ∨ 𝜓) ∧ 𝜑) ∨ 𝜒)) |
6 | | ordir 1004 |
. . . 4
⊢ (((¬
(𝜑 ∨ 𝜓) ∧ 𝜑) ∨ 𝜒) ↔ ((¬ (𝜑 ∨ 𝜓) ∨ 𝜒) ∧ (𝜑 ∨ 𝜒))) |
7 | 5, 6 | bitri 278 |
. . 3
⊢ ((𝜒 ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝜑)) ↔ ((¬ (𝜑 ∨ 𝜓) ∨ 𝜒) ∧ (𝜑 ∨ 𝜒))) |
8 | 4, 7 | bitri 278 |
. 2
⊢ (𝜒 ↔ ((¬ (𝜑 ∨ 𝜓) ∨ 𝜒) ∧ (𝜑 ∨ 𝜒))) |
9 | | pm4.45 995 |
. . . . 5
⊢ (𝜒 ↔ (𝜒 ∧ (𝜒 ∨ 𝜃))) |
10 | | anor 980 |
. . . . 5
⊢ ((𝜒 ∧ (𝜒 ∨ 𝜃)) ↔ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃))) |
11 | 9, 10 | bitri 278 |
. . . 4
⊢ (𝜒 ↔ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃))) |
12 | 11 | orbi2i 910 |
. . 3
⊢ ((𝜑 ∨ 𝜒) ↔ (𝜑 ∨ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃)))) |
13 | 12 | anbi2i 625 |
. 2
⊢ (((¬
(𝜑 ∨ 𝜓) ∨ 𝜒) ∧ (𝜑 ∨ 𝜒)) ↔ ((¬ (𝜑 ∨ 𝜓) ∨ 𝜒) ∧ (𝜑 ∨ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃))))) |
14 | | anor 980 |
. 2
⊢ (((¬
(𝜑 ∨ 𝜓) ∨ 𝜒) ∧ (𝜑 ∨ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃)))) ↔ ¬ (¬ (¬ (𝜑 ∨ 𝜓) ∨ 𝜒) ∨ ¬ (𝜑 ∨ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃))))) |
15 | 8, 13, 14 | 3bitrri 301 |
1
⊢ (¬
(¬ (¬ (𝜑 ∨ 𝜓) ∨ 𝜒) ∨ ¬ (𝜑 ∨ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃)))) ↔ 𝜒) |