|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > dn1 | Structured version Visualization version GIF version | ||
| Description: A single axiom for Boolean algebra known as DN1. See McCune, Veroff, Fitelson, Harris, Feist, Wos, Short single axioms for Boolean algebra, Journal of Automated Reasoning, 29(1):1--16, 2002. (https://www.cs.unm.edu/~mccune/papers/basax/v12.pdf). (Contributed by Jeff Hankins, 3-Jul-2009.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 6-Jan-2013.) | 
| Ref | Expression | 
|---|---|
| dn1 | ⊢ (¬ (¬ (¬ (𝜑 ∨ 𝜓) ∨ 𝜒) ∨ ¬ (𝜑 ∨ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃)))) ↔ 𝜒) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm2.45 882 | . . . . 5 ⊢ (¬ (𝜑 ∨ 𝜓) → ¬ 𝜑) | |
| 2 | imnan 399 | . . . . 5 ⊢ ((¬ (𝜑 ∨ 𝜓) → ¬ 𝜑) ↔ ¬ (¬ (𝜑 ∨ 𝜓) ∧ 𝜑)) | |
| 3 | 1, 2 | mpbi 230 | . . . 4 ⊢ ¬ (¬ (𝜑 ∨ 𝜓) ∧ 𝜑) | 
| 4 | 3 | biorfri 940 | . . 3 ⊢ (𝜒 ↔ (𝜒 ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝜑))) | 
| 5 | orcom 871 | . . 3 ⊢ ((𝜒 ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝜑)) ↔ ((¬ (𝜑 ∨ 𝜓) ∧ 𝜑) ∨ 𝜒)) | |
| 6 | ordir 1009 | . . 3 ⊢ (((¬ (𝜑 ∨ 𝜓) ∧ 𝜑) ∨ 𝜒) ↔ ((¬ (𝜑 ∨ 𝜓) ∨ 𝜒) ∧ (𝜑 ∨ 𝜒))) | |
| 7 | 4, 5, 6 | 3bitri 297 | . 2 ⊢ (𝜒 ↔ ((¬ (𝜑 ∨ 𝜓) ∨ 𝜒) ∧ (𝜑 ∨ 𝜒))) | 
| 8 | pm4.45 1000 | . . . . 5 ⊢ (𝜒 ↔ (𝜒 ∧ (𝜒 ∨ 𝜃))) | |
| 9 | anor 985 | . . . . 5 ⊢ ((𝜒 ∧ (𝜒 ∨ 𝜃)) ↔ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃))) | |
| 10 | 8, 9 | bitri 275 | . . . 4 ⊢ (𝜒 ↔ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃))) | 
| 11 | 10 | orbi2i 913 | . . 3 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜑 ∨ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃)))) | 
| 12 | 11 | anbi2i 623 | . 2 ⊢ (((¬ (𝜑 ∨ 𝜓) ∨ 𝜒) ∧ (𝜑 ∨ 𝜒)) ↔ ((¬ (𝜑 ∨ 𝜓) ∨ 𝜒) ∧ (𝜑 ∨ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃))))) | 
| 13 | anor 985 | . 2 ⊢ (((¬ (𝜑 ∨ 𝜓) ∨ 𝜒) ∧ (𝜑 ∨ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃)))) ↔ ¬ (¬ (¬ (𝜑 ∨ 𝜓) ∨ 𝜒) ∨ ¬ (𝜑 ∨ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃))))) | |
| 14 | 7, 12, 13 | 3bitrri 298 | 1 ⊢ (¬ (¬ (¬ (𝜑 ∨ 𝜓) ∨ 𝜒) ∨ ¬ (𝜑 ∨ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃)))) ↔ 𝜒) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |