|   | Mathbox for Giovanni Mascellani | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > or32dd | Structured version Visualization version GIF version | ||
| Description: A rearrangement of disjuncts, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.) | 
| Ref | Expression | 
|---|---|
| or32dd.1 | ⊢ (𝜑 → (𝜓 → ((𝜒 ∨ 𝜃) ∨ 𝜏))) | 
| Ref | Expression | 
|---|---|
| or32dd | ⊢ (𝜑 → (𝜓 → ((𝜒 ∨ 𝜏) ∨ 𝜃))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | or32dd.1 | . 2 ⊢ (𝜑 → (𝜓 → ((𝜒 ∨ 𝜃) ∨ 𝜏))) | |
| 2 | or32 925 | . 2 ⊢ (((𝜒 ∨ 𝜏) ∨ 𝜃) ↔ ((𝜒 ∨ 𝜃) ∨ 𝜏)) | |
| 3 | 1, 2 | imbitrrdi 252 | 1 ⊢ (𝜑 → (𝜓 → ((𝜒 ∨ 𝜏) ∨ 𝜃))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∨ wo 847 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-or 848 | 
| This theorem is referenced by: mpobi123f 38170 mptbi12f 38174 ac6s6 38180 | 
| Copyright terms: Public domain | W3C validator |