Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anbi123i | Structured version Visualization version GIF version |
Description: Join 3 biconditionals with conjunction. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
bi3.1 | ⊢ (𝜑 ↔ 𝜓) |
bi3.2 | ⊢ (𝜒 ↔ 𝜃) |
bi3.3 | ⊢ (𝜏 ↔ 𝜂) |
Ref | Expression |
---|---|
3anbi123i | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) ↔ (𝜓 ∧ 𝜃 ∧ 𝜂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi3.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | bi3.2 | . . . 4 ⊢ (𝜒 ↔ 𝜃) | |
3 | 1, 2 | anbi12i 627 | . . 3 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
4 | bi3.3 | . . 3 ⊢ (𝜏 ↔ 𝜂) | |
5 | 3, 4 | anbi12i 627 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜏) ↔ ((𝜓 ∧ 𝜃) ∧ 𝜂)) |
6 | df-3an 1088 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜏)) | |
7 | df-3an 1088 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ ((𝜓 ∧ 𝜃) ∧ 𝜂)) | |
8 | 5, 6, 7 | 3bitr4i 303 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) ↔ (𝜓 ∧ 𝜃 ∧ 𝜂)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: 3anbi1i 1156 3anbi2i 1157 3anbi3i 1158 syl3anb 1160 an33rean 1482 an33reanOLD 1483 cadnot 1617 f13dfv 7155 axgroth5 10589 axgroth6 10593 cotr2g 14696 cbvprod 15634 isstruct 16862 pmtr3ncomlem1 19090 opprsubg 19887 issubgr 27647 nbgrsym 27739 nb3grpr 27758 cplgr3v 27811 usgr2pthlem 28140 umgr2adedgwlk 28319 umgrwwlks2on 28331 elwspths2spth 28341 clwwlkccat 28363 clwlkclwwlk 28375 3wlkdlem8 28540 frgr3v 28648 or3dir 30820 unelldsys 32135 bnj156 32716 bnj206 32719 bnj887 32754 bnj121 32859 bnj130 32863 bnj605 32896 bnj581 32897 poxp2 33799 xpord3lem 33804 poxp3 33805 brpprod3b 34198 brapply 34249 brrestrict 34260 dfrdg4 34262 brsegle 34419 dfeqvrels3 36709 tendoset 38780 |
Copyright terms: Public domain | W3C validator |