![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anbi123i | Structured version Visualization version GIF version |
Description: Join 3 biconditionals with conjunction. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
bi3.1 | ⊢ (𝜑 ↔ 𝜓) |
bi3.2 | ⊢ (𝜒 ↔ 𝜃) |
bi3.3 | ⊢ (𝜏 ↔ 𝜂) |
Ref | Expression |
---|---|
3anbi123i | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) ↔ (𝜓 ∧ 𝜃 ∧ 𝜂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi3.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | bi3.2 | . . . 4 ⊢ (𝜒 ↔ 𝜃) | |
3 | 1, 2 | anbi12i 625 | . . 3 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
4 | bi3.3 | . . 3 ⊢ (𝜏 ↔ 𝜂) | |
5 | 3, 4 | anbi12i 625 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜏) ↔ ((𝜓 ∧ 𝜃) ∧ 𝜂)) |
6 | df-3an 1087 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜏)) | |
7 | df-3an 1087 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ ((𝜓 ∧ 𝜃) ∧ 𝜂)) | |
8 | 5, 6, 7 | 3bitr4i 302 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) ↔ (𝜓 ∧ 𝜃 ∧ 𝜂)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1087 |
This theorem is referenced by: 3anbi1i 1155 3anbi2i 1156 3anbi3i 1157 syl3anb 1159 an33rean 1481 an33reanOLD 1482 cadnot 1614 f13dfv 7274 poxp2 8131 xpord3lem 8137 poxp3 8138 xpord3pred 8140 axgroth5 10821 axgroth6 10825 cotr2g 14927 cbvprod 15863 isstruct 17089 pmtr3ncomlem1 19382 opprsubg 20243 addscut 27700 mulscut 27827 issubgr 28795 nbgrsym 28887 nb3grpr 28906 cplgr3v 28959 usgr2pthlem 29287 umgr2adedgwlk 29466 umgrwwlks2on 29478 elwspths2spth 29488 clwwlkccat 29510 clwlkclwwlk 29522 3wlkdlem8 29687 frgr3v 29795 or3dir 31969 unelldsys 33454 bnj156 34037 bnj206 34040 bnj887 34074 bnj121 34179 bnj130 34183 bnj605 34216 bnj581 34217 brpprod3b 35163 brapply 35214 brrestrict 35225 dfrdg4 35227 brsegle 35384 dfeqvrels3 37762 tendoset 39933 |
Copyright terms: Public domain | W3C validator |