MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anbi123i Structured version   Visualization version   GIF version

Theorem 3anbi123i 1148
Description: Join 3 biconditionals with conjunction. (Contributed by NM, 21-Apr-1994.)
Hypotheses
Ref Expression
bi3.1 (𝜑𝜓)
bi3.2 (𝜒𝜃)
bi3.3 (𝜏𝜂)
Assertion
Ref Expression
3anbi123i ((𝜑𝜒𝜏) ↔ (𝜓𝜃𝜂))

Proof of Theorem 3anbi123i
StepHypRef Expression
1 bi3.1 . . . 4 (𝜑𝜓)
2 bi3.2 . . . 4 (𝜒𝜃)
31, 2anbi12i 626 . . 3 ((𝜑𝜒) ↔ (𝜓𝜃))
4 bi3.3 . . 3 (𝜏𝜂)
53, 4anbi12i 626 . 2 (((𝜑𝜒) ∧ 𝜏) ↔ ((𝜓𝜃) ∧ 𝜂))
6 df-3an 1082 . 2 ((𝜑𝜒𝜏) ↔ ((𝜑𝜒) ∧ 𝜏))
7 df-3an 1082 . 2 ((𝜓𝜃𝜂) ↔ ((𝜓𝜃) ∧ 𝜂))
85, 6, 73bitr4i 304 1 ((𝜑𝜒𝜏) ↔ (𝜓𝜃𝜂))
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396  w3a 1080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 208  df-an 397  df-3an 1082
This theorem is referenced by:  3anbi1i  1150  3anbi2i  1151  3anbi3i  1152  syl3anb  1154  an33rean  1475  cadnot  1597  f13dfv  6896  axgroth5  10092  axgroth6  10096  cotr2g  14170  cbvprod  15102  isstruct  16325  pmtr3ncomlem1  18332  opprsubg  19076  issubgr  26736  nbgrsym  26828  nb3grpr  26847  cplgr3v  26900  usgr2pthlem  27231  umgr2adedgwlk  27411  umgrwwlks2on  27423  elwspths2spth  27433  clwwlkccat  27455  clwlkclwwlk  27467  3wlkdlem8  27633  frgr3v  27746  or3dir  29917  unelldsys  31034  bnj156  31615  bnj206  31618  bnj887  31653  bnj121  31758  bnj130  31762  bnj605  31795  bnj581  31796  brpprod3b  32957  brapply  33008  brrestrict  33019  dfrdg4  33021  brsegle  33178  dfeqvrels3  35355  tendoset  37426
  Copyright terms: Public domain W3C validator