MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anbi123i Structured version   Visualization version   GIF version

Theorem 3anbi123i 1154
Description: Join 3 biconditionals with conjunction. (Contributed by NM, 21-Apr-1994.)
Hypotheses
Ref Expression
bi3.1 (𝜑𝜓)
bi3.2 (𝜒𝜃)
bi3.3 (𝜏𝜂)
Assertion
Ref Expression
3anbi123i ((𝜑𝜒𝜏) ↔ (𝜓𝜃𝜂))

Proof of Theorem 3anbi123i
StepHypRef Expression
1 bi3.1 . . . 4 (𝜑𝜓)
2 bi3.2 . . . 4 (𝜒𝜃)
31, 2anbi12i 628 . . 3 ((𝜑𝜒) ↔ (𝜓𝜃))
4 bi3.3 . . 3 (𝜏𝜂)
53, 4anbi12i 628 . 2 (((𝜑𝜒) ∧ 𝜏) ↔ ((𝜓𝜃) ∧ 𝜂))
6 df-3an 1088 . 2 ((𝜑𝜒𝜏) ↔ ((𝜑𝜒) ∧ 𝜏))
7 df-3an 1088 . 2 ((𝜓𝜃𝜂) ↔ ((𝜓𝜃) ∧ 𝜂))
85, 6, 73bitr4i 303 1 ((𝜑𝜒𝜏) ↔ (𝜓𝜃𝜂))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3anbi1i  1156  3anbi2i  1157  3anbi3i  1158  syl3anb  1160  an33rean  1482  cadnot  1611  f13dfv  7293  poxp2  8166  xpord3lem  8172  poxp3  8173  xpord3pred  8175  axgroth5  10861  axgroth6  10865  hash7g  14521  cotr2g  15011  cbvprod  15945  cbvprodv  15946  prodeq1i  15948  isstruct  17185  pmtr3ncomlem1  19505  opprsubg  20368  addscut  28025  mulscut  28172  issubgr  29302  nbgrsym  29394  nb3grpr  29413  cplgr3v  29466  usgr2pthlem  29795  umgr2adedgwlk  29974  umgrwwlks2on  29986  elwspths2spth  29996  clwwlkccat  30018  clwlkclwwlk  30030  3wlkdlem8  30195  frgr3v  30303  or3dir  32488  unelldsys  34138  bnj156  34720  bnj206  34723  bnj887  34757  bnj121  34862  bnj130  34866  bnj605  34899  bnj581  34900  brpprod3b  35868  brapply  35919  brrestrict  35930  dfrdg4  35932  brsegle  36089  prodeq2si  36185  cbvprodvw2  36229  dfeqvrels3  38570  tendoset  40741  grtriproplem  47843  grtrif1o  47846  grlimgrtrilem1  47896  usgrexmpl2trifr  47931  gpg5nbgrvtx03starlem1  47958  gpg5nbgrvtx03starlem2  47959  gpg5nbgrvtx03starlem3  47960  gpg5nbgrvtx13starlem1  47961  gpg5nbgrvtx13starlem2  47962  gpg5nbgrvtx13starlem3  47963
  Copyright terms: Public domain W3C validator