MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anbi123i Structured version   Visualization version   GIF version

Theorem 3anbi123i 1155
Description: Join 3 biconditionals with conjunction. (Contributed by NM, 21-Apr-1994.)
Hypotheses
Ref Expression
bi3.1 (𝜑𝜓)
bi3.2 (𝜒𝜃)
bi3.3 (𝜏𝜂)
Assertion
Ref Expression
3anbi123i ((𝜑𝜒𝜏) ↔ (𝜓𝜃𝜂))

Proof of Theorem 3anbi123i
StepHypRef Expression
1 bi3.1 . . . 4 (𝜑𝜓)
2 bi3.2 . . . 4 (𝜒𝜃)
31, 2anbi12i 628 . . 3 ((𝜑𝜒) ↔ (𝜓𝜃))
4 bi3.3 . . 3 (𝜏𝜂)
53, 4anbi12i 628 . 2 (((𝜑𝜒) ∧ 𝜏) ↔ ((𝜓𝜃) ∧ 𝜂))
6 df-3an 1088 . 2 ((𝜑𝜒𝜏) ↔ ((𝜑𝜒) ∧ 𝜏))
7 df-3an 1088 . 2 ((𝜓𝜃𝜂) ↔ ((𝜓𝜃) ∧ 𝜂))
85, 6, 73bitr4i 303 1 ((𝜑𝜒𝜏) ↔ (𝜓𝜃𝜂))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3anbi1i  1157  3anbi2i  1158  3anbi3i  1159  syl3anb  1161  an33rean  1485  cadnot  1615  f13dfv  7252  poxp2  8125  xpord3lem  8131  poxp3  8132  xpord3pred  8134  axgroth5  10784  axgroth6  10788  hash7g  14458  cotr2g  14949  cbvprod  15886  cbvprodv  15887  prodeq1i  15889  isstruct  17129  pmtr3ncomlem1  19410  opprsubg  20268  addscut  27892  mulscut  28042  issubgr  29205  nbgrsym  29297  nb3grpr  29316  cplgr3v  29369  usgr2pthlem  29700  umgr2adedgwlk  29882  umgrwwlks2on  29894  elwspths2spth  29904  clwwlkccat  29926  clwlkclwwlk  29938  3wlkdlem8  30103  frgr3v  30211  or3dir  32396  unelldsys  34155  bnj156  34725  bnj206  34728  bnj887  34762  bnj121  34867  bnj130  34871  bnj605  34904  bnj581  34905  brpprod3b  35882  brapply  35933  brrestrict  35944  dfrdg4  35946  brsegle  36103  prodeq2si  36199  cbvprodvw2  36242  dfeqvrels3  38587  tendoset  40760  grtriproplem  47942  grtrif1o  47945  grlimgrtrilem1  47997  usgrexmpl2trifr  48032  gpg5nbgrvtx03starlem1  48063  gpg5nbgrvtx03starlem2  48064  gpg5nbgrvtx03starlem3  48065  gpg5nbgrvtx13starlem1  48066  gpg5nbgrvtx13starlem2  48067  gpg5nbgrvtx13starlem3  48068  2arwcatlem1  49588  setc1onsubc  49595
  Copyright terms: Public domain W3C validator