![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anbi123i | Structured version Visualization version GIF version |
Description: Join 3 biconditionals with conjunction. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
bi3.1 | ⊢ (𝜑 ↔ 𝜓) |
bi3.2 | ⊢ (𝜒 ↔ 𝜃) |
bi3.3 | ⊢ (𝜏 ↔ 𝜂) |
Ref | Expression |
---|---|
3anbi123i | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) ↔ (𝜓 ∧ 𝜃 ∧ 𝜂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi3.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | bi3.2 | . . . 4 ⊢ (𝜒 ↔ 𝜃) | |
3 | 1, 2 | anbi12i 627 | . . 3 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
4 | bi3.3 | . . 3 ⊢ (𝜏 ↔ 𝜂) | |
5 | 3, 4 | anbi12i 627 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜏) ↔ ((𝜓 ∧ 𝜃) ∧ 𝜂)) |
6 | df-3an 1089 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜏)) | |
7 | df-3an 1089 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ ((𝜓 ∧ 𝜃) ∧ 𝜂)) | |
8 | 5, 6, 7 | 3bitr4i 302 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) ↔ (𝜓 ∧ 𝜃 ∧ 𝜂)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1089 |
This theorem is referenced by: 3anbi1i 1157 3anbi2i 1158 3anbi3i 1159 syl3anb 1161 an33rean 1483 an33reanOLD 1484 cadnot 1616 f13dfv 7271 poxp2 8128 xpord3lem 8134 poxp3 8135 xpord3pred 8137 axgroth5 10818 axgroth6 10822 cotr2g 14922 cbvprod 15858 isstruct 17084 pmtr3ncomlem1 19340 opprsubg 20165 addscut 27459 mulscut 27585 issubgr 28525 nbgrsym 28617 nb3grpr 28636 cplgr3v 28689 usgr2pthlem 29017 umgr2adedgwlk 29196 umgrwwlks2on 29208 elwspths2spth 29218 clwwlkccat 29240 clwlkclwwlk 29252 3wlkdlem8 29417 frgr3v 29525 or3dir 31697 unelldsys 33151 bnj156 33734 bnj206 33737 bnj887 33771 bnj121 33876 bnj130 33880 bnj605 33913 bnj581 33914 brpprod3b 34854 brapply 34905 brrestrict 34916 dfrdg4 34918 brsegle 35075 dfeqvrels3 37454 tendoset 39625 |
Copyright terms: Public domain | W3C validator |