Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anbi123i | Structured version Visualization version GIF version |
Description: Join 3 biconditionals with conjunction. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
bi3.1 | ⊢ (𝜑 ↔ 𝜓) |
bi3.2 | ⊢ (𝜒 ↔ 𝜃) |
bi3.3 | ⊢ (𝜏 ↔ 𝜂) |
Ref | Expression |
---|---|
3anbi123i | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) ↔ (𝜓 ∧ 𝜃 ∧ 𝜂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi3.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | bi3.2 | . . . 4 ⊢ (𝜒 ↔ 𝜃) | |
3 | 1, 2 | anbi12i 626 | . . 3 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
4 | bi3.3 | . . 3 ⊢ (𝜏 ↔ 𝜂) | |
5 | 3, 4 | anbi12i 626 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜏) ↔ ((𝜓 ∧ 𝜃) ∧ 𝜂)) |
6 | df-3an 1087 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜏)) | |
7 | df-3an 1087 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ ((𝜓 ∧ 𝜃) ∧ 𝜂)) | |
8 | 5, 6, 7 | 3bitr4i 302 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) ↔ (𝜓 ∧ 𝜃 ∧ 𝜂)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: 3anbi1i 1155 3anbi2i 1156 3anbi3i 1157 syl3anb 1159 an33rean 1481 an33reanOLD 1482 cadnot 1618 f13dfv 7127 axgroth5 10511 axgroth6 10515 cotr2g 14615 cbvprod 15553 isstruct 16781 pmtr3ncomlem1 18996 opprsubg 19793 issubgr 27541 nbgrsym 27633 nb3grpr 27652 cplgr3v 27705 usgr2pthlem 28032 umgr2adedgwlk 28211 umgrwwlks2on 28223 elwspths2spth 28233 clwwlkccat 28255 clwlkclwwlk 28267 3wlkdlem8 28432 frgr3v 28540 or3dir 30712 unelldsys 32026 bnj156 32607 bnj206 32610 bnj887 32645 bnj121 32750 bnj130 32754 bnj605 32787 bnj581 32788 poxp2 33717 xpord3lem 33722 poxp3 33723 brpprod3b 34116 brapply 34167 brrestrict 34178 dfrdg4 34180 brsegle 34337 dfeqvrels3 36629 tendoset 38700 |
Copyright terms: Public domain | W3C validator |