![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anbi123i | Structured version Visualization version GIF version |
Description: Join 3 biconditionals with conjunction. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
bi3.1 | ⊢ (𝜑 ↔ 𝜓) |
bi3.2 | ⊢ (𝜒 ↔ 𝜃) |
bi3.3 | ⊢ (𝜏 ↔ 𝜂) |
Ref | Expression |
---|---|
3anbi123i | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) ↔ (𝜓 ∧ 𝜃 ∧ 𝜂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi3.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | bi3.2 | . . . 4 ⊢ (𝜒 ↔ 𝜃) | |
3 | 1, 2 | anbi12i 628 | . . 3 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
4 | bi3.3 | . . 3 ⊢ (𝜏 ↔ 𝜂) | |
5 | 3, 4 | anbi12i 628 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜏) ↔ ((𝜓 ∧ 𝜃) ∧ 𝜂)) |
6 | df-3an 1088 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜏)) | |
7 | df-3an 1088 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ ((𝜓 ∧ 𝜃) ∧ 𝜂)) | |
8 | 5, 6, 7 | 3bitr4i 303 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) ↔ (𝜓 ∧ 𝜃 ∧ 𝜂)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: 3anbi1i 1156 3anbi2i 1157 3anbi3i 1158 syl3anb 1160 an33rean 1482 cadnot 1611 f13dfv 7293 poxp2 8166 xpord3lem 8172 poxp3 8173 xpord3pred 8175 axgroth5 10861 axgroth6 10865 hash7g 14521 cotr2g 15011 cbvprod 15945 cbvprodv 15946 prodeq1i 15948 isstruct 17185 pmtr3ncomlem1 19505 opprsubg 20368 addscut 28025 mulscut 28172 issubgr 29302 nbgrsym 29394 nb3grpr 29413 cplgr3v 29466 usgr2pthlem 29795 umgr2adedgwlk 29974 umgrwwlks2on 29986 elwspths2spth 29996 clwwlkccat 30018 clwlkclwwlk 30030 3wlkdlem8 30195 frgr3v 30303 or3dir 32488 unelldsys 34138 bnj156 34720 bnj206 34723 bnj887 34757 bnj121 34862 bnj130 34866 bnj605 34899 bnj581 34900 brpprod3b 35868 brapply 35919 brrestrict 35930 dfrdg4 35932 brsegle 36089 prodeq2si 36185 cbvprodvw2 36229 dfeqvrels3 38570 tendoset 40741 grtriproplem 47843 grtrif1o 47846 grlimgrtrilem1 47896 usgrexmpl2trifr 47931 gpg5nbgrvtx03starlem1 47958 gpg5nbgrvtx03starlem2 47959 gpg5nbgrvtx03starlem3 47960 gpg5nbgrvtx13starlem1 47961 gpg5nbgrvtx13starlem2 47962 gpg5nbgrvtx13starlem3 47963 |
Copyright terms: Public domain | W3C validator |