![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anbi123i | Structured version Visualization version GIF version |
Description: Join 3 biconditionals with conjunction. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
bi3.1 | ⊢ (𝜑 ↔ 𝜓) |
bi3.2 | ⊢ (𝜒 ↔ 𝜃) |
bi3.3 | ⊢ (𝜏 ↔ 𝜂) |
Ref | Expression |
---|---|
3anbi123i | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) ↔ (𝜓 ∧ 𝜃 ∧ 𝜂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi3.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | bi3.2 | . . . 4 ⊢ (𝜒 ↔ 𝜃) | |
3 | 1, 2 | anbi12i 627 | . . 3 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
4 | bi3.3 | . . 3 ⊢ (𝜏 ↔ 𝜂) | |
5 | 3, 4 | anbi12i 627 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜏) ↔ ((𝜓 ∧ 𝜃) ∧ 𝜂)) |
6 | df-3an 1089 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜏)) | |
7 | df-3an 1089 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ ((𝜓 ∧ 𝜃) ∧ 𝜂)) | |
8 | 5, 6, 7 | 3bitr4i 303 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) ↔ (𝜓 ∧ 𝜃 ∧ 𝜂)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: 3anbi1i 1157 3anbi2i 1158 3anbi3i 1159 syl3anb 1161 an33rean 1483 cadnot 1612 f13dfv 7310 poxp2 8184 xpord3lem 8190 poxp3 8191 xpord3pred 8193 axgroth5 10893 axgroth6 10897 hash7g 14535 cotr2g 15025 cbvprod 15961 cbvprodv 15962 prodeq1i 15964 isstruct 17199 pmtr3ncomlem1 19515 opprsubg 20378 addscut 28029 mulscut 28176 issubgr 29306 nbgrsym 29398 nb3grpr 29417 cplgr3v 29470 usgr2pthlem 29799 umgr2adedgwlk 29978 umgrwwlks2on 29990 elwspths2spth 30000 clwwlkccat 30022 clwlkclwwlk 30034 3wlkdlem8 30199 frgr3v 30307 or3dir 32489 unelldsys 34122 bnj156 34704 bnj206 34707 bnj887 34741 bnj121 34846 bnj130 34850 bnj605 34883 bnj581 34884 brpprod3b 35851 brapply 35902 brrestrict 35913 dfrdg4 35915 brsegle 36072 prodeq2si 36168 cbvprodvw2 36213 dfeqvrels3 38545 tendoset 40716 grtriproplem 47790 grtrif1o 47793 grlimgrtrilem1 47818 usgrexmpl2trifr 47852 |
Copyright terms: Public domain | W3C validator |