Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oranabs | Structured version Visualization version GIF version |
Description: Absorb a disjunct into a conjunct. (Contributed by Roy F. Longton, 23-Jun-2005.) (Proof shortened by Wolf Lammen, 10-Nov-2013.) |
Ref | Expression |
---|---|
oranabs | ⊢ (((𝜑 ∨ ¬ 𝜓) ∧ 𝜓) ↔ (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biortn 935 | . . 3 ⊢ (𝜓 → (𝜑 ↔ (¬ 𝜓 ∨ 𝜑))) | |
2 | orcom 867 | . . 3 ⊢ ((¬ 𝜓 ∨ 𝜑) ↔ (𝜑 ∨ ¬ 𝜓)) | |
3 | 1, 2 | bitr2di 288 | . 2 ⊢ (𝜓 → ((𝜑 ∨ ¬ 𝜓) ↔ 𝜑)) |
4 | 3 | pm5.32ri 576 | 1 ⊢ (((𝜑 ∨ ¬ 𝜓) ∧ 𝜓) ↔ (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 |
This theorem is referenced by: itg2addnclem3 35830 |
Copyright terms: Public domain | W3C validator |