| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oranabs | Structured version Visualization version GIF version | ||
| Description: Absorb a disjunct into a conjunct. (Contributed by Roy F. Longton, 23-Jun-2005.) (Proof shortened by Wolf Lammen, 10-Nov-2013.) |
| Ref | Expression |
|---|---|
| oranabs | ⊢ (((𝜑 ∨ ¬ 𝜓) ∧ 𝜓) ↔ (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biortn 938 | . . 3 ⊢ (𝜓 → (𝜑 ↔ (¬ 𝜓 ∨ 𝜑))) | |
| 2 | orcom 871 | . . 3 ⊢ ((¬ 𝜓 ∨ 𝜑) ↔ (𝜑 ∨ ¬ 𝜓)) | |
| 3 | 1, 2 | bitr2di 288 | . 2 ⊢ (𝜓 → ((𝜑 ∨ ¬ 𝜓) ↔ 𝜑)) |
| 4 | 3 | pm5.32ri 575 | 1 ⊢ (((𝜑 ∨ ¬ 𝜓) ∧ 𝜓) ↔ (𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 |
| This theorem is referenced by: itg2addnclem3 37680 |
| Copyright terms: Public domain | W3C validator |