Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itg2addnclem3 Structured version   Visualization version   GIF version

Theorem itg2addnclem3 33818
Description: Lemma incomprehensible in isolation split off to shorten proof of itg2addnc 33819. (Contributed by Brendan Leahy, 11-Mar-2018.)
Hypotheses
Ref Expression
itg2addnc.f1 (𝜑𝐹 ∈ MblFn)
itg2addnc.f2 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2addnc.f3 (𝜑 → (∫2𝐹) ∈ ℝ)
itg2addnc.g2 (𝜑𝐺:ℝ⟶(0[,)+∞))
itg2addnc.g3 (𝜑 → (∫2𝐺) ∈ ℝ)
Assertion
Ref Expression
itg2addnclem3 (𝜑 → (∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺) ∧ 𝑠 = (∫1)) → ∃𝑡𝑢(∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢))))
Distinct variable groups:   𝑡,𝑠,𝑢,𝑦,𝑧,𝑓,𝑔,,𝑐,𝑑,𝐹   𝐺,𝑠,𝑡,𝑢,𝑦,𝑧,𝑓,𝑔,,𝑐,𝑑   𝜑,𝑠,𝑡,𝑢,𝑦,𝑧,𝑓,𝑔,,𝑐,𝑑

Proof of Theorem itg2addnclem3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 itg2addnc.f1 . . . . . . . . 9 (𝜑𝐹 ∈ MblFn)
2 itg2addnc.f2 . . . . . . . . 9 (𝜑𝐹:ℝ⟶(0[,)+∞))
31, 2itg2addnclem2 33817 . . . . . . . 8 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) ∈ dom ∫1)
43adantrr 708 . . . . . . 7 (((𝜑 ∈ dom ∫1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺))) → (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) ∈ dom ∫1)
5 simplr 785 . . . . . . . . 9 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → ∈ dom ∫1)
6 i1fsub 23765 . . . . . . . . 9 (( ∈ dom ∫1 ∧ (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) ∈ dom ∫1) → (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) ∈ dom ∫1)
75, 3, 6syl2anc 579 . . . . . . . 8 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) ∈ dom ∫1)
87adantrr 708 . . . . . . 7 (((𝜑 ∈ dom ∫1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺))) → (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) ∈ dom ∫1)
9 3nn 11350 . . . . . . . . . . . . 13 3 ∈ ℕ
10 nnrp 12040 . . . . . . . . . . . . 13 (3 ∈ ℕ → 3 ∈ ℝ+)
119, 10ax-mp 5 . . . . . . . . . . . 12 3 ∈ ℝ+
12 rpdivcl 12053 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (𝑦 / 3) ∈ ℝ+)
1311, 12mpan2 682 . . . . . . . . . . 11 (𝑦 ∈ ℝ+ → (𝑦 / 3) ∈ ℝ+)
1413adantl 473 . . . . . . . . . 10 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → (𝑦 / 3) ∈ ℝ+)
15 fveq2 6374 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
1615fvoveq1d 6863 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑧 → (⌊‘((𝐹𝑥) / (𝑦 / 3))) = (⌊‘((𝐹𝑧) / (𝑦 / 3))))
1716oveq1d 6856 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑧 → ((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) = ((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1))
1817oveq1d 6856 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑧 → (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) = (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)))
19 fveq2 6374 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑧 → (𝑥) = (𝑧))
2018, 19breq12d 4821 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → ((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ↔ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧)))
2119neeq1d 2995 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → ((𝑥) ≠ 0 ↔ (𝑧) ≠ 0))
2220, 21anbi12d 624 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ↔ ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0)))
2322, 18, 19ifbieq12d 4269 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)) = if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)))
24 eqid 2764 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) = (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))
25 ovex 6873 . . . . . . . . . . . . . . . . . 18 (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ∈ V
26 fvex 6387 . . . . . . . . . . . . . . . . . 18 (𝑧) ∈ V
2725, 26ifex 4290 . . . . . . . . . . . . . . . . 17 if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) ∈ V
2823, 24, 27fvmpt 6470 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ℝ → ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)))
2928eqeq1d 2766 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℝ → (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0 ↔ if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) = 0))
3028oveq1d 6856 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℝ → (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + (𝑦 / 3)) = (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) + (𝑦 / 3)))
3129, 30ifbieq2d 4267 . . . . . . . . . . . . . 14 (𝑧 ∈ ℝ → if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + (𝑦 / 3))) = if(if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) = 0, 0, (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) + (𝑦 / 3))))
3231adantl 473 . . . . . . . . . . . . 13 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + (𝑦 / 3))) = if(if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) = 0, 0, (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) + (𝑦 / 3))))
33 breq1 4811 . . . . . . . . . . . . . 14 (0 = if(if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) = 0, 0, (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) + (𝑦 / 3))) → (0 ≤ (𝐹𝑧) ↔ if(if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) = 0, 0, (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) + (𝑦 / 3))) ≤ (𝐹𝑧)))
34 breq1 4811 . . . . . . . . . . . . . 14 ((if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) + (𝑦 / 3)) = if(if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) = 0, 0, (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) + (𝑦 / 3))) → ((if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) + (𝑦 / 3)) ≤ (𝐹𝑧) ↔ if(if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) = 0, 0, (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) + (𝑦 / 3))) ≤ (𝐹𝑧)))
352ad2antrr 717 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → 𝐹:ℝ⟶(0[,)+∞))
3635ffvelrnda 6548 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (𝐹𝑧) ∈ (0[,)+∞))
37 elrege0 12481 . . . . . . . . . . . . . . . . 17 ((𝐹𝑧) ∈ (0[,)+∞) ↔ ((𝐹𝑧) ∈ ℝ ∧ 0 ≤ (𝐹𝑧)))
3836, 37sylib 209 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝐹𝑧) ∈ ℝ ∧ 0 ≤ (𝐹𝑧)))
3938simprd 489 . . . . . . . . . . . . . . 15 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → 0 ≤ (𝐹𝑧))
4039adantr 472 . . . . . . . . . . . . . 14 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) = 0) → 0 ≤ (𝐹𝑧))
41 df-ne 2937 . . . . . . . . . . . . . . . 16 (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) ≠ 0 ↔ ¬ if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) = 0)
42 neeq1 2998 . . . . . . . . . . . . . . . . . 18 ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) = if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≠ 0 ↔ if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) ≠ 0))
43 oveq1 6848 . . . . . . . . . . . . . . . . . . 19 ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) = if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) + (𝑦 / 3)) = (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) + (𝑦 / 3)))
4443breq1d 4818 . . . . . . . . . . . . . . . . . 18 ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) = if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) → (((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) + (𝑦 / 3)) ≤ (𝐹𝑧) ↔ (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) + (𝑦 / 3)) ≤ (𝐹𝑧)))
4542, 44imbi12d 335 . . . . . . . . . . . . . . . . 17 ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) = if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) → (((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≠ 0 → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) + (𝑦 / 3)) ≤ (𝐹𝑧)) ↔ (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) ≠ 0 → (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) + (𝑦 / 3)) ≤ (𝐹𝑧))))
46 neeq1 2998 . . . . . . . . . . . . . . . . . 18 ((𝑧) = if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) → ((𝑧) ≠ 0 ↔ if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) ≠ 0))
47 oveq1 6848 . . . . . . . . . . . . . . . . . . 19 ((𝑧) = if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) → ((𝑧) + (𝑦 / 3)) = (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) + (𝑦 / 3)))
4847breq1d 4818 . . . . . . . . . . . . . . . . . 18 ((𝑧) = if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) → (((𝑧) + (𝑦 / 3)) ≤ (𝐹𝑧) ↔ (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) + (𝑦 / 3)) ≤ (𝐹𝑧)))
4946, 48imbi12d 335 . . . . . . . . . . . . . . . . 17 ((𝑧) = if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) → (((𝑧) ≠ 0 → ((𝑧) + (𝑦 / 3)) ≤ (𝐹𝑧)) ↔ (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) ≠ 0 → (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) + (𝑦 / 3)) ≤ (𝐹𝑧))))
50 rge0ssre 12483 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0[,)+∞) ⊆ ℝ
5150, 36sseldi 3758 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (𝐹𝑧) ∈ ℝ)
5213ad2antlr 718 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (𝑦 / 3) ∈ ℝ+)
5351, 52rerpdivcld 12100 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝐹𝑧) / (𝑦 / 3)) ∈ ℝ)
54 reflcl 12804 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹𝑧) / (𝑦 / 3)) ∈ ℝ → (⌊‘((𝐹𝑧) / (𝑦 / 3))) ∈ ℝ)
55 peano2rem 10601 . . . . . . . . . . . . . . . . . . . . . . 23 ((⌊‘((𝐹𝑧) / (𝑦 / 3))) ∈ ℝ → ((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) ∈ ℝ)
5653, 54, 553syl 18 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) ∈ ℝ)
5713rpred 12069 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ℝ+ → (𝑦 / 3) ∈ ℝ)
5857ad2antlr 718 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (𝑦 / 3) ∈ ℝ)
5956, 58remulcld 10323 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ∈ ℝ)
60 peano2rem 10601 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹𝑧) / (𝑦 / 3)) ∈ ℝ → (((𝐹𝑧) / (𝑦 / 3)) − 1) ∈ ℝ)
6153, 60syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((𝐹𝑧) / (𝑦 / 3)) − 1) ∈ ℝ)
6261, 58remulcld 10323 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((𝐹𝑧) / (𝑦 / 3)) − 1) · (𝑦 / 3)) ∈ ℝ)
6353, 54syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (⌊‘((𝐹𝑧) / (𝑦 / 3))) ∈ ℝ)
64 1red 10293 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → 1 ∈ ℝ)
65 flle 12807 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐹𝑧) / (𝑦 / 3)) ∈ ℝ → (⌊‘((𝐹𝑧) / (𝑦 / 3))) ≤ ((𝐹𝑧) / (𝑦 / 3)))
6653, 65syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (⌊‘((𝐹𝑧) / (𝑦 / 3))) ≤ ((𝐹𝑧) / (𝑦 / 3)))
6763, 53, 64, 66lesub1dd 10896 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) ≤ (((𝐹𝑧) / (𝑦 / 3)) − 1))
6856, 61, 52lemul1d 12112 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) ≤ (((𝐹𝑧) / (𝑦 / 3)) − 1) ↔ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ ((((𝐹𝑧) / (𝑦 / 3)) − 1) · (𝑦 / 3))))
6967, 68mpbid 223 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ ((((𝐹𝑧) / (𝑦 / 3)) − 1) · (𝑦 / 3)))
7059, 62, 58, 69leadd1dd 10894 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) + (𝑦 / 3)) ≤ (((((𝐹𝑧) / (𝑦 / 3)) − 1) · (𝑦 / 3)) + (𝑦 / 3)))
7153recnd 10321 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝐹𝑧) / (𝑦 / 3)) ∈ ℂ)
72 ax-1cn 10246 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℂ
73 subcl 10533 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐹𝑧) / (𝑦 / 3)) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐹𝑧) / (𝑦 / 3)) − 1) ∈ ℂ)
7471, 72, 73sylancl 580 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((𝐹𝑧) / (𝑦 / 3)) − 1) ∈ ℂ)
7572a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → 1 ∈ ℂ)
7652rpcnd 12071 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (𝑦 / 3) ∈ ℂ)
7774, 75, 76adddird 10318 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((((𝐹𝑧) / (𝑦 / 3)) − 1) + 1) · (𝑦 / 3)) = (((((𝐹𝑧) / (𝑦 / 3)) − 1) · (𝑦 / 3)) + (1 · (𝑦 / 3))))
78 npcan 10543 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐹𝑧) / (𝑦 / 3)) ∈ ℂ ∧ 1 ∈ ℂ) → ((((𝐹𝑧) / (𝑦 / 3)) − 1) + 1) = ((𝐹𝑧) / (𝑦 / 3)))
7971, 72, 78sylancl 580 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((𝐹𝑧) / (𝑦 / 3)) − 1) + 1) = ((𝐹𝑧) / (𝑦 / 3)))
8079oveq1d 6856 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((((𝐹𝑧) / (𝑦 / 3)) − 1) + 1) · (𝑦 / 3)) = (((𝐹𝑧) / (𝑦 / 3)) · (𝑦 / 3)))
8176mulid2d 10311 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (1 · (𝑦 / 3)) = (𝑦 / 3))
8281oveq2d 6857 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((((𝐹𝑧) / (𝑦 / 3)) − 1) · (𝑦 / 3)) + (1 · (𝑦 / 3))) = (((((𝐹𝑧) / (𝑦 / 3)) − 1) · (𝑦 / 3)) + (𝑦 / 3)))
8377, 80, 823eqtr3rd 2807 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((((𝐹𝑧) / (𝑦 / 3)) − 1) · (𝑦 / 3)) + (𝑦 / 3)) = (((𝐹𝑧) / (𝑦 / 3)) · (𝑦 / 3)))
8451recnd 10321 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (𝐹𝑧) ∈ ℂ)
8552rpne0d 12074 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (𝑦 / 3) ≠ 0)
8684, 76, 85divcan1d 11055 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((𝐹𝑧) / (𝑦 / 3)) · (𝑦 / 3)) = (𝐹𝑧))
8783, 86eqtrd 2798 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((((𝐹𝑧) / (𝑦 / 3)) − 1) · (𝑦 / 3)) + (𝑦 / 3)) = (𝐹𝑧))
8870, 87breqtrd 4834 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) + (𝑦 / 3)) ≤ (𝐹𝑧))
8988adantr 472 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0)) → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) + (𝑦 / 3)) ≤ (𝐹𝑧))
9089a1d 25 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0)) → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≠ 0 → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) + (𝑦 / 3)) ≤ (𝐹𝑧)))
91 ianor 1004 . . . . . . . . . . . . . . . . . . . . 21 (¬ ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0) ↔ (¬ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∨ ¬ (𝑧) ≠ 0))
9291anbi1i 617 . . . . . . . . . . . . . . . . . . . 20 ((¬ ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0) ∧ (𝑧) ≠ 0) ↔ ((¬ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∨ ¬ (𝑧) ≠ 0) ∧ (𝑧) ≠ 0))
93 oranabs 1022 . . . . . . . . . . . . . . . . . . . 20 (((¬ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∨ ¬ (𝑧) ≠ 0) ∧ (𝑧) ≠ 0) ↔ (¬ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0))
9492, 93bitri 266 . . . . . . . . . . . . . . . . . . 19 ((¬ ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0) ∧ (𝑧) ≠ 0) ↔ (¬ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0))
95 i1ff 23733 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( ∈ dom ∫1:ℝ⟶ℝ)
9695ad2antlr 718 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → :ℝ⟶ℝ)
9796ffvelrnda 6548 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (𝑧) ∈ ℝ)
9897, 58readdcld 10322 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝑧) + (𝑦 / 3)) ∈ ℝ)
9998adantr 472 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ¬ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧)) → ((𝑧) + (𝑦 / 3)) ∈ ℝ)
10051adantr 472 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ¬ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧)) → (𝐹𝑧) ∈ ℝ)
10159, 58readdcld 10322 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) + (𝑦 / 3)) ∈ ℝ)
102101adantr 472 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ¬ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧)) → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) + (𝑦 / 3)) ∈ ℝ)
10397adantr 472 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ¬ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧)) → (𝑧) ∈ ℝ)
10459adantr 472 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ¬ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧)) → (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ∈ ℝ)
10557ad3antlr 722 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ¬ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧)) → (𝑦 / 3) ∈ ℝ)
10697, 59ltnled 10437 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝑧) < (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ↔ ¬ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧)))
107106biimpar 469 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ¬ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧)) → (𝑧) < (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)))
108103, 104, 105, 107ltadd1dd 10891 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ¬ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧)) → ((𝑧) + (𝑦 / 3)) < ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) + (𝑦 / 3)))
10988adantr 472 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ¬ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧)) → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) + (𝑦 / 3)) ≤ (𝐹𝑧))
11099, 102, 100, 108, 109ltletrd 10450 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ¬ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧)) → ((𝑧) + (𝑦 / 3)) < (𝐹𝑧))
11199, 100, 110ltled 10438 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ¬ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧)) → ((𝑧) + (𝑦 / 3)) ≤ (𝐹𝑧))
112111adantrr 708 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (¬ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0)) → ((𝑧) + (𝑦 / 3)) ≤ (𝐹𝑧))
11394, 112sylan2b 587 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (¬ ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0) ∧ (𝑧) ≠ 0)) → ((𝑧) + (𝑦 / 3)) ≤ (𝐹𝑧))
114113expr 448 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ¬ ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0)) → ((𝑧) ≠ 0 → ((𝑧) + (𝑦 / 3)) ≤ (𝐹𝑧)))
11545, 49, 90, 114ifbothda 4279 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) ≠ 0 → (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) + (𝑦 / 3)) ≤ (𝐹𝑧)))
11641, 115syl5bir 234 . . . . . . . . . . . . . . 15 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (¬ if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) = 0 → (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) + (𝑦 / 3)) ≤ (𝐹𝑧)))
117116imp 395 . . . . . . . . . . . . . 14 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ¬ if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) = 0) → (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) + (𝑦 / 3)) ≤ (𝐹𝑧))
11833, 34, 40, 117ifbothda 4279 . . . . . . . . . . . . 13 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → if(if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) = 0, 0, (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) + (𝑦 / 3))) ≤ (𝐹𝑧))
11932, 118eqbrtrd 4830 . . . . . . . . . . . 12 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + (𝑦 / 3))) ≤ (𝐹𝑧))
120119ralrimiva 3112 . . . . . . . . . . 11 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → ∀𝑧 ∈ ℝ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + (𝑦 / 3))) ≤ (𝐹𝑧))
121 reex 10279 . . . . . . . . . . . . 13 ℝ ∈ V
122121a1i 11 . . . . . . . . . . . 12 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → ℝ ∈ V)
123 c0ex 10286 . . . . . . . . . . . . . 14 0 ∈ V
124 ovex 6873 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + (𝑦 / 3)) ∈ V
125123, 124ifex 4290 . . . . . . . . . . . . 13 if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + (𝑦 / 3))) ∈ V
126125a1i 11 . . . . . . . . . . . 12 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + (𝑦 / 3))) ∈ V)
127 eqidd 2765 . . . . . . . . . . . 12 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + (𝑦 / 3)))) = (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + (𝑦 / 3)))))
1282feqmptd 6437 . . . . . . . . . . . . 13 (𝜑𝐹 = (𝑧 ∈ ℝ ↦ (𝐹𝑧)))
129128ad2antrr 717 . . . . . . . . . . . 12 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → 𝐹 = (𝑧 ∈ ℝ ↦ (𝐹𝑧)))
130122, 126, 36, 127, 129ofrfval2 7112 . . . . . . . . . . 11 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → ((𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + (𝑦 / 3)))) ∘𝑟𝐹 ↔ ∀𝑧 ∈ ℝ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + (𝑦 / 3))) ≤ (𝐹𝑧)))
131120, 130mpbird 248 . . . . . . . . . 10 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + (𝑦 / 3)))) ∘𝑟𝐹)
132 oveq2 6849 . . . . . . . . . . . . . 14 (𝑐 = (𝑦 / 3) → (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐) = (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + (𝑦 / 3)))
133132ifeq2d 4261 . . . . . . . . . . . . 13 (𝑐 = (𝑦 / 3) → if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐)) = if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + (𝑦 / 3))))
134133mpteq2dv 4903 . . . . . . . . . . . 12 (𝑐 = (𝑦 / 3) → (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) = (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + (𝑦 / 3)))))
135134breq1d 4818 . . . . . . . . . . 11 (𝑐 = (𝑦 / 3) → ((𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹 ↔ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + (𝑦 / 3)))) ∘𝑟𝐹))
136135rspcev 3460 . . . . . . . . . 10 (((𝑦 / 3) ∈ ℝ+ ∧ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + (𝑦 / 3)))) ∘𝑟𝐹) → ∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹)
13714, 131, 136syl2anc 579 . . . . . . . . 9 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → ∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹)
138137adantrr 708 . . . . . . . 8 (((𝜑 ∈ dom ∫1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺))) → ∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹)
13913ad2antrl 719 . . . . . . . . 9 (((𝜑 ∈ dom ∫1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺))) → (𝑦 / 3) ∈ ℝ+)
14095ffnd 6223 . . . . . . . . . . . . . . . . . . 19 ( ∈ dom ∫1 Fn ℝ)
141140ad2antlr 718 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → Fn ℝ)
142 ovex 6873 . . . . . . . . . . . . . . . . . . . . 21 (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ∈ V
143 fvex 6387 . . . . . . . . . . . . . . . . . . . . 21 (𝑥) ∈ V
144142, 143ifex 4290 . . . . . . . . . . . . . . . . . . . 20 if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)) ∈ V
145144, 24fnmpti 6199 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) Fn ℝ
146145a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) Fn ℝ)
147 inidm 3981 . . . . . . . . . . . . . . . . . 18 (ℝ ∩ ℝ) = ℝ
148 eqidd 2765 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (𝑧) = (𝑧))
14928adantl 473 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)))
150141, 146, 122, 122, 147, 148, 149ofval 7103 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))))
151150eqeq1d 2766 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0 ↔ ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0))
152150oveq1d 6856 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3)) = (((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) + (𝑦 / 3)))
153151, 152ifbieq2d 4267 . . . . . . . . . . . . . . 15 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3))) = if(((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0, 0, (((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) + (𝑦 / 3))))
154153adantr 472 . . . . . . . . . . . . . 14 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧))) → if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3))) = if(((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0, 0, (((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) + (𝑦 / 3))))
155 breq1 4811 . . . . . . . . . . . . . . 15 (0 = if(((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0, 0, (((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) + (𝑦 / 3))) → (0 ≤ (𝐺𝑧) ↔ if(((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0, 0, (((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) + (𝑦 / 3))) ≤ (𝐺𝑧)))
156 breq1 4811 . . . . . . . . . . . . . . 15 ((((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) + (𝑦 / 3)) = if(((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0, 0, (((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) + (𝑦 / 3))) → ((((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) + (𝑦 / 3)) ≤ (𝐺𝑧) ↔ if(((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0, 0, (((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) + (𝑦 / 3))) ≤ (𝐺𝑧)))
157 itg2addnc.g2 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐺:ℝ⟶(0[,)+∞))
158157ad2antrr 717 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → 𝐺:ℝ⟶(0[,)+∞))
159158ffvelrnda 6548 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (𝐺𝑧) ∈ (0[,)+∞))
160 elrege0 12481 . . . . . . . . . . . . . . . . . 18 ((𝐺𝑧) ∈ (0[,)+∞) ↔ ((𝐺𝑧) ∈ ℝ ∧ 0 ≤ (𝐺𝑧)))
161159, 160sylib 209 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝐺𝑧) ∈ ℝ ∧ 0 ≤ (𝐺𝑧)))
162161simprd 489 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → 0 ≤ (𝐺𝑧))
163162ad2antrr 717 . . . . . . . . . . . . . . 15 ((((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧))) ∧ ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0) → 0 ≤ (𝐺𝑧))
164 oveq2 6849 . . . . . . . . . . . . . . . . . 18 ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) = if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) → ((𝑧) − (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3))) = ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))))
165164oveq1d 6856 . . . . . . . . . . . . . . . . 17 ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) = if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) → (((𝑧) − (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3))) + (𝑦 / 3)) = (((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) + (𝑦 / 3)))
166165breq1d 4818 . . . . . . . . . . . . . . . 16 ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) = if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) → ((((𝑧) − (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3))) + (𝑦 / 3)) ≤ (𝐺𝑧) ↔ (((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) + (𝑦 / 3)) ≤ (𝐺𝑧)))
167 oveq2 6849 . . . . . . . . . . . . . . . . . 18 ((𝑧) = if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) → ((𝑧) − (𝑧)) = ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))))
168167oveq1d 6856 . . . . . . . . . . . . . . . . 17 ((𝑧) = if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) → (((𝑧) − (𝑧)) + (𝑦 / 3)) = (((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) + (𝑦 / 3)))
169168breq1d 4818 . . . . . . . . . . . . . . . 16 ((𝑧) = if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) → ((((𝑧) − (𝑧)) + (𝑦 / 3)) ≤ (𝐺𝑧) ↔ (((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) + (𝑦 / 3)) ≤ (𝐺𝑧)))
170 id 22 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧) = 0 → (𝑧) = 0)
171 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0) → (𝑧) ≠ 0)
172171necon2bi 2966 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑧) = 0 → ¬ ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0))
173 iffalse 4251 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (¬ ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0) → if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) = (𝑧))
174172, 173syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧) = 0 → if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) = (𝑧))
175174, 170eqtrd 2798 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧) = 0 → if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) = 0)
176170, 175oveq12d 6859 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧) = 0 → ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = (0 − 0))
177 0m0e0 11398 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 − 0) = 0
178176, 177syl6eq 2814 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧) = 0 → ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0)
179178con3i 151 . . . . . . . . . . . . . . . . . . . . . 22 (¬ ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0 → ¬ (𝑧) = 0)
180 iffalse 4251 . . . . . . . . . . . . . . . . . . . . . . 23 (¬ (𝑧) = 0 → if((𝑧) = 0, 0, ((𝑧) + 𝑦)) = ((𝑧) + 𝑦))
181180breq1d 4818 . . . . . . . . . . . . . . . . . . . . . 22 (¬ (𝑧) = 0 → (if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧)) ↔ ((𝑧) + 𝑦) ≤ ((𝐹𝑧) + (𝐺𝑧))))
182179, 181syl 17 . . . . . . . . . . . . . . . . . . . . 21 (¬ ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0 → (if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧)) ↔ ((𝑧) + 𝑦) ≤ ((𝐹𝑧) + (𝐺𝑧))))
183182adantl 473 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ¬ ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0) → (if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧)) ↔ ((𝑧) + 𝑦) ≤ ((𝐹𝑧) + (𝐺𝑧))))
18497recnd 10321 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (𝑧) ∈ ℂ)
18559recnd 10321 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ∈ ℂ)
186184, 185, 76subsubd 10673 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝑧) − ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) = (((𝑧) − (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3))) + (𝑦 / 3)))
187186adantr 472 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ((𝑧) + 𝑦) ≤ ((𝐹𝑧) + (𝐺𝑧))) → ((𝑧) − ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) = (((𝑧) − (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3))) + (𝑦 / 3)))
18859, 58resubcld 10711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3)) ∈ ℝ)
189 rpre 12035 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
190189ad2antlr 718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → 𝑦 ∈ ℝ)
191188, 190readdcld 10322 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3)) + 𝑦) ∈ ℝ)
19250, 159sseldi 3758 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (𝐺𝑧) ∈ ℝ)
193 1re 10292 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1 ∈ ℝ
194193, 193readdcli 10308 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (1 + 1) ∈ ℝ
195 resubcl 10598 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝐹𝑧) / (𝑦 / 3)) ∈ ℝ ∧ (1 + 1) ∈ ℝ) → (((𝐹𝑧) / (𝑦 / 3)) − (1 + 1)) ∈ ℝ)
19653, 194, 195sylancl 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((𝐹𝑧) / (𝑦 / 3)) − (1 + 1)) ∈ ℝ)
197196, 58remulcld 10323 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((𝐹𝑧) / (𝑦 / 3)) − (1 + 1)) · (𝑦 / 3)) ∈ ℝ)
198 peano2re 10462 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((⌊‘((𝐹𝑧) / (𝑦 / 3))) ∈ ℝ → ((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) ∈ ℝ)
19963, 198syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) ∈ ℝ)
200 resubcl 10598 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) ∈ ℝ ∧ (1 + 1) ∈ ℝ) → (((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − (1 + 1)) ∈ ℝ)
201199, 194, 200sylancl 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − (1 + 1)) ∈ ℝ)
202201, 58remulcld 10323 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − (1 + 1)) · (𝑦 / 3)) ∈ ℝ)
20357, 189resubcld 10711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 ∈ ℝ+ → ((𝑦 / 3) − 𝑦) ∈ ℝ)
204203ad2antlr 718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝑦 / 3) − 𝑦) ∈ ℝ)
205194a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (1 + 1) ∈ ℝ)
206 fllep1 12809 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝐹𝑧) / (𝑦 / 3)) ∈ ℝ → ((𝐹𝑧) / (𝑦 / 3)) ≤ ((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1))
20753, 206syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝐹𝑧) / (𝑦 / 3)) ≤ ((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1))
20853, 199, 205, 207lesub1dd 10896 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((𝐹𝑧) / (𝑦 / 3)) − (1 + 1)) ≤ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − (1 + 1)))
209196, 201, 52lemul1d 12112 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((𝐹𝑧) / (𝑦 / 3)) − (1 + 1)) ≤ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − (1 + 1)) ↔ ((((𝐹𝑧) / (𝑦 / 3)) − (1 + 1)) · (𝑦 / 3)) ≤ ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − (1 + 1)) · (𝑦 / 3))))
210208, 209mpbid 223 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((𝐹𝑧) / (𝑦 / 3)) − (1 + 1)) · (𝑦 / 3)) ≤ ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − (1 + 1)) · (𝑦 / 3)))
211197, 202, 204, 210lesub1dd 10896 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((((𝐹𝑧) / (𝑦 / 3)) − (1 + 1)) · (𝑦 / 3)) − ((𝑦 / 3) − 𝑦)) ≤ (((((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − (1 + 1)) · (𝑦 / 3)) − ((𝑦 / 3) − 𝑦)))
21272, 72addcli 10299 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (1 + 1) ∈ ℂ
213212negcli 10602 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 -(1 + 1) ∈ ℂ
214213a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → -(1 + 1) ∈ ℂ)
21571, 214, 76adddird 10318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((𝐹𝑧) / (𝑦 / 3)) + -(1 + 1)) · (𝑦 / 3)) = ((((𝐹𝑧) / (𝑦 / 3)) · (𝑦 / 3)) + (-(1 + 1) · (𝑦 / 3))))
216 negsub 10582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝐹𝑧) / (𝑦 / 3)) ∈ ℂ ∧ (1 + 1) ∈ ℂ) → (((𝐹𝑧) / (𝑦 / 3)) + -(1 + 1)) = (((𝐹𝑧) / (𝑦 / 3)) − (1 + 1)))
21771, 212, 216sylancl 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((𝐹𝑧) / (𝑦 / 3)) + -(1 + 1)) = (((𝐹𝑧) / (𝑦 / 3)) − (1 + 1)))
218217oveq1d 6856 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((𝐹𝑧) / (𝑦 / 3)) + -(1 + 1)) · (𝑦 / 3)) = ((((𝐹𝑧) / (𝑦 / 3)) − (1 + 1)) · (𝑦 / 3)))
219 df-2 11334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2 = (1 + 1)
220219negeqi 10527 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 -2 = -(1 + 1)
221220oveq1i 6851 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (-2 · (𝑦 / 3)) = (-(1 + 1) · (𝑦 / 3))
222 2cn 11346 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2 ∈ ℂ
22313rpcnd 12071 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑦 ∈ ℝ+ → (𝑦 / 3) ∈ ℂ)
224 mulneg1 10719 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((2 ∈ ℂ ∧ (𝑦 / 3) ∈ ℂ) → (-2 · (𝑦 / 3)) = -(2 · (𝑦 / 3)))
225222, 223, 224sylancr 581 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 ∈ ℝ+ → (-2 · (𝑦 / 3)) = -(2 · (𝑦 / 3)))
226221, 225syl5eqr 2812 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 ∈ ℝ+ → (-(1 + 1) · (𝑦 / 3)) = -(2 · (𝑦 / 3)))
227226ad2antlr 718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (-(1 + 1) · (𝑦 / 3)) = -(2 · (𝑦 / 3)))
22886, 227oveq12d 6859 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((𝐹𝑧) / (𝑦 / 3)) · (𝑦 / 3)) + (-(1 + 1) · (𝑦 / 3))) = ((𝐹𝑧) + -(2 · (𝑦 / 3))))
229215, 218, 2283eqtr3d 2806 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((𝐹𝑧) / (𝑦 / 3)) − (1 + 1)) · (𝑦 / 3)) = ((𝐹𝑧) + -(2 · (𝑦 / 3))))
230 rpcn 12039 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 ∈ ℝ+𝑦 ∈ ℂ)
231230, 223negsubdi2d 10661 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 ∈ ℝ+ → -(𝑦 − (𝑦 / 3)) = ((𝑦 / 3) − 𝑦))
232 3cn 11352 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3 ∈ ℂ
233 3ne0 11384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3 ≠ 0
234 divcan2 10946 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑦 ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → (3 · (𝑦 / 3)) = 𝑦)
235232, 233, 234mp3an23 1577 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑦 ∈ ℂ → (3 · (𝑦 / 3)) = 𝑦)
236230, 235syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑦 ∈ ℝ+ → (3 · (𝑦 / 3)) = 𝑦)
237223mulid2d 10311 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑦 ∈ ℝ+ → (1 · (𝑦 / 3)) = (𝑦 / 3))
238236, 237oveq12d 6859 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 ∈ ℝ+ → ((3 · (𝑦 / 3)) − (1 · (𝑦 / 3))) = (𝑦 − (𝑦 / 3)))
239 3m1e2 11406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (3 − 1) = 2
240239oveq1i 6851 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((3 − 1) · (𝑦 / 3)) = (2 · (𝑦 / 3))
241 subdir 10717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((3 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑦 / 3) ∈ ℂ) → ((3 − 1) · (𝑦 / 3)) = ((3 · (𝑦 / 3)) − (1 · (𝑦 / 3))))
242232, 72, 241mp3an12 1575 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑦 / 3) ∈ ℂ → ((3 − 1) · (𝑦 / 3)) = ((3 · (𝑦 / 3)) − (1 · (𝑦 / 3))))
243223, 242syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑦 ∈ ℝ+ → ((3 − 1) · (𝑦 / 3)) = ((3 · (𝑦 / 3)) − (1 · (𝑦 / 3))))
244240, 243syl5reqr 2813 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 ∈ ℝ+ → ((3 · (𝑦 / 3)) − (1 · (𝑦 / 3))) = (2 · (𝑦 / 3)))
245238, 244eqtr3d 2800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 ∈ ℝ+ → (𝑦 − (𝑦 / 3)) = (2 · (𝑦 / 3)))
246245negeqd 10528 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 ∈ ℝ+ → -(𝑦 − (𝑦 / 3)) = -(2 · (𝑦 / 3)))
247231, 246eqtr3d 2800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 ∈ ℝ+ → ((𝑦 / 3) − 𝑦) = -(2 · (𝑦 / 3)))
248247ad2antlr 718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝑦 / 3) − 𝑦) = -(2 · (𝑦 / 3)))
249229, 248oveq12d 6859 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((((𝐹𝑧) / (𝑦 / 3)) − (1 + 1)) · (𝑦 / 3)) − ((𝑦 / 3) − 𝑦)) = (((𝐹𝑧) + -(2 · (𝑦 / 3))) − -(2 · (𝑦 / 3))))
250 rpcn 12039 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑦 / 3) ∈ ℝ+ → (𝑦 / 3) ∈ ℂ)
251 mulcl 10272 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((2 ∈ ℂ ∧ (𝑦 / 3) ∈ ℂ) → (2 · (𝑦 / 3)) ∈ ℂ)
252222, 250, 251sylancr 581 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑦 / 3) ∈ ℝ+ → (2 · (𝑦 / 3)) ∈ ℂ)
25313, 252syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 ∈ ℝ+ → (2 · (𝑦 / 3)) ∈ ℂ)
254253negcld 10632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 ∈ ℝ+ → -(2 · (𝑦 / 3)) ∈ ℂ)
255254ad2antlr 718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → -(2 · (𝑦 / 3)) ∈ ℂ)
25684, 255pncand 10646 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((𝐹𝑧) + -(2 · (𝑦 / 3))) − -(2 · (𝑦 / 3))) = (𝐹𝑧))
257249, 256eqtrd 2798 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((((𝐹𝑧) / (𝑦 / 3)) − (1 + 1)) · (𝑦 / 3)) − ((𝑦 / 3) − 𝑦)) = (𝐹𝑧))
25863recnd 10321 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (⌊‘((𝐹𝑧) / (𝑦 / 3))) ∈ ℂ)
259 peano2cn 10461 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((⌊‘((𝐹𝑧) / (𝑦 / 3))) ∈ ℂ → ((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) ∈ ℂ)
260 subsub4 10567 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − 1) − 1) = (((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − (1 + 1)))
26172, 72, 260mp3an23 1577 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) ∈ ℂ → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − 1) − 1) = (((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − (1 + 1)))
262258, 259, 2613syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − 1) − 1) = (((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − (1 + 1)))
263 pncan 10540 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((⌊‘((𝐹𝑧) / (𝑦 / 3))) ∈ ℂ ∧ 1 ∈ ℂ) → (((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − 1) = (⌊‘((𝐹𝑧) / (𝑦 / 3))))
264258, 72, 263sylancl 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − 1) = (⌊‘((𝐹𝑧) / (𝑦 / 3))))
265264oveq1d 6856 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − 1) − 1) = ((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1))
266262, 265eqtr3d 2800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − (1 + 1)) = ((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1))
267266oveq1d 6856 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − (1 + 1)) · (𝑦 / 3)) = (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)))
268267oveq1d 6856 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − (1 + 1)) · (𝑦 / 3)) − ((𝑦 / 3) − 𝑦)) = ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − ((𝑦 / 3) − 𝑦)))
269190recnd 10321 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → 𝑦 ∈ ℂ)
270185, 76, 269subsubd 10673 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − ((𝑦 / 3) − 𝑦)) = (((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3)) + 𝑦))
271268, 270eqtrd 2798 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − (1 + 1)) · (𝑦 / 3)) − ((𝑦 / 3) − 𝑦)) = (((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3)) + 𝑦))
272211, 257, 2713brtr3d 4839 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (𝐹𝑧) ≤ (((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3)) + 𝑦))
27351, 191, 192, 272leadd1dd 10894 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝐹𝑧) + (𝐺𝑧)) ≤ ((((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3)) + 𝑦) + (𝐺𝑧)))
274192recnd 10321 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (𝐺𝑧) ∈ ℂ)
275188recnd 10321 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3)) ∈ ℂ)
276230ad2antlr 718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → 𝑦 ∈ ℂ)
277274, 275, 276addassd 10315 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((𝐺𝑧) + ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) + 𝑦) = ((𝐺𝑧) + (((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3)) + 𝑦)))
278275, 276addcld 10312 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3)) + 𝑦) ∈ ℂ)
279274, 278addcomd 10491 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝐺𝑧) + (((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3)) + 𝑦)) = ((((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3)) + 𝑦) + (𝐺𝑧)))
280277, 279eqtrd 2798 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((𝐺𝑧) + ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) + 𝑦) = ((((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3)) + 𝑦) + (𝐺𝑧)))
281273, 280breqtrrd 4836 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝐹𝑧) + (𝐺𝑧)) ≤ (((𝐺𝑧) + ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) + 𝑦))
28297, 190readdcld 10322 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝑧) + 𝑦) ∈ ℝ)
28351, 192readdcld 10322 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝐹𝑧) + (𝐺𝑧)) ∈ ℝ)
284192, 188readdcld 10322 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝐺𝑧) + ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) ∈ ℝ)
285284, 190readdcld 10322 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((𝐺𝑧) + ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) + 𝑦) ∈ ℝ)
286 letr 10384 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑧) + 𝑦) ∈ ℝ ∧ ((𝐹𝑧) + (𝐺𝑧)) ∈ ℝ ∧ (((𝐺𝑧) + ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) + 𝑦) ∈ ℝ) → ((((𝑧) + 𝑦) ≤ ((𝐹𝑧) + (𝐺𝑧)) ∧ ((𝐹𝑧) + (𝐺𝑧)) ≤ (((𝐺𝑧) + ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) + 𝑦)) → ((𝑧) + 𝑦) ≤ (((𝐺𝑧) + ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) + 𝑦)))
287282, 283, 285, 286syl3anc 1490 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((𝑧) + 𝑦) ≤ ((𝐹𝑧) + (𝐺𝑧)) ∧ ((𝐹𝑧) + (𝐺𝑧)) ≤ (((𝐺𝑧) + ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) + 𝑦)) → ((𝑧) + 𝑦) ≤ (((𝐺𝑧) + ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) + 𝑦)))
288281, 287mpan2d 685 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((𝑧) + 𝑦) ≤ ((𝐹𝑧) + (𝐺𝑧)) → ((𝑧) + 𝑦) ≤ (((𝐺𝑧) + ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) + 𝑦)))
289288imp 395 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ((𝑧) + 𝑦) ≤ ((𝐹𝑧) + (𝐺𝑧))) → ((𝑧) + 𝑦) ≤ (((𝐺𝑧) + ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) + 𝑦))
29097, 188, 192lesubaddd 10877 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((𝑧) − ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) ≤ (𝐺𝑧) ↔ (𝑧) ≤ ((𝐺𝑧) + ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3)))))
29197, 284, 190leadd1d 10874 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝑧) ≤ ((𝐺𝑧) + ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) ↔ ((𝑧) + 𝑦) ≤ (((𝐺𝑧) + ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) + 𝑦)))
292290, 291bitrd 270 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((𝑧) − ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) ≤ (𝐺𝑧) ↔ ((𝑧) + 𝑦) ≤ (((𝐺𝑧) + ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) + 𝑦)))
293292adantr 472 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ((𝑧) + 𝑦) ≤ ((𝐹𝑧) + (𝐺𝑧))) → (((𝑧) − ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) ≤ (𝐺𝑧) ↔ ((𝑧) + 𝑦) ≤ (((𝐺𝑧) + ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) + 𝑦)))
294289, 293mpbird 248 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ((𝑧) + 𝑦) ≤ ((𝐹𝑧) + (𝐺𝑧))) → ((𝑧) − ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) ≤ (𝐺𝑧))
295187, 294eqbrtrrd 4832 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ((𝑧) + 𝑦) ≤ ((𝐹𝑧) + (𝐺𝑧))) → (((𝑧) − (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3))) + (𝑦 / 3)) ≤ (𝐺𝑧))
296295ex 401 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((𝑧) + 𝑦) ≤ ((𝐹𝑧) + (𝐺𝑧)) → (((𝑧) − (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3))) + (𝑦 / 3)) ≤ (𝐺𝑧)))
297296adantr 472 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ¬ ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0) → (((𝑧) + 𝑦) ≤ ((𝐹𝑧) + (𝐺𝑧)) → (((𝑧) − (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3))) + (𝑦 / 3)) ≤ (𝐺𝑧)))
298183, 297sylbid 231 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ¬ ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0) → (if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧)) → (((𝑧) − (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3))) + (𝑦 / 3)) ≤ (𝐺𝑧)))
299298imp 395 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ¬ ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0) ∧ if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧))) → (((𝑧) − (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3))) + (𝑦 / 3)) ≤ (𝐺𝑧))
300299an32s 642 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧))) ∧ ¬ ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0) → (((𝑧) − (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3))) + (𝑦 / 3)) ≤ (𝐺𝑧))
301300adantr 472 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧))) ∧ ¬ ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0) ∧ ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0)) → (((𝑧) − (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3))) + (𝑦 / 3)) ≤ (𝐺𝑧))
302173oveq2d 6857 . . . . . . . . . . . . . . . . . . . 20 (¬ ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0) → ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = ((𝑧) − (𝑧)))
303184subidd 10633 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝑧) − (𝑧)) = 0)
304303adantr 472 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧))) → ((𝑧) − (𝑧)) = 0)
305302, 304sylan9eqr 2820 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧))) ∧ ¬ ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0)) → ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0)
306305pm2.24d 148 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧))) ∧ ¬ ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0)) → (¬ ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0 → (((𝑧) − (𝑧)) + (𝑦 / 3)) ≤ (𝐺𝑧)))
307306imp 395 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧))) ∧ ¬ ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0)) ∧ ¬ ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0) → (((𝑧) − (𝑧)) + (𝑦 / 3)) ≤ (𝐺𝑧))
308307an32s 642 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧))) ∧ ¬ ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0) ∧ ¬ ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0)) → (((𝑧) − (𝑧)) + (𝑦 / 3)) ≤ (𝐺𝑧))
309166, 169, 301, 308ifbothda 4279 . . . . . . . . . . . . . . 15 ((((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧))) ∧ ¬ ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0) → (((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) + (𝑦 / 3)) ≤ (𝐺𝑧))
310155, 156, 163, 309ifbothda 4279 . . . . . . . . . . . . . 14 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧))) → if(((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0, 0, (((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) + (𝑦 / 3))) ≤ (𝐺𝑧))
311154, 310eqbrtrd 4830 . . . . . . . . . . . . 13 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧))) → if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3))) ≤ (𝐺𝑧))
312311ex 401 . . . . . . . . . . . 12 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧)) → if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3))) ≤ (𝐺𝑧)))
313312ralimdva 3108 . . . . . . . . . . 11 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → (∀𝑧 ∈ ℝ if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧)) → ∀𝑧 ∈ ℝ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3))) ≤ (𝐺𝑧)))
314121a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ∈ V)
315 ovex 6873 . . . . . . . . . . . . . . 15 ((𝑧) + 𝑦) ∈ V
316123, 315ifex 4290 . . . . . . . . . . . . . 14 if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ∈ V
317316a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ℝ) → if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ∈ V)
3182ffvelrnda 6548 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ℝ) → (𝐹𝑧) ∈ (0[,)+∞))
31950, 318sseldi 3758 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ℝ) → (𝐹𝑧) ∈ ℝ)
320157ffvelrnda 6548 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ℝ) → (𝐺𝑧) ∈ (0[,)+∞))
32150, 320sseldi 3758 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ℝ) → (𝐺𝑧) ∈ ℝ)
322319, 321readdcld 10322 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ℝ) → ((𝐹𝑧) + (𝐺𝑧)) ∈ ℝ)
323 eqidd 2765 . . . . . . . . . . . . 13 (𝜑 → (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) = (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))))
324157feqmptd 6437 . . . . . . . . . . . . . 14 (𝜑𝐺 = (𝑧 ∈ ℝ ↦ (𝐺𝑧)))
325314, 318, 320, 128, 324offval2 7111 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑓 + 𝐺) = (𝑧 ∈ ℝ ↦ ((𝐹𝑧) + (𝐺𝑧))))
326314, 317, 322, 323, 325ofrfval2 7112 . . . . . . . . . . . 12 (𝜑 → ((𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺) ↔ ∀𝑧 ∈ ℝ if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧))))
327326ad2antrr 717 . . . . . . . . . . 11 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → ((𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺) ↔ ∀𝑧 ∈ ℝ if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧))))
328 ovex 6873 . . . . . . . . . . . . . . 15 (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3)) ∈ V
329123, 328ifex 4290 . . . . . . . . . . . . . 14 if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3))) ∈ V
330329a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ℝ) → if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3))) ∈ V)
331 eqidd 2765 . . . . . . . . . . . . 13 (𝜑 → (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3)))) = (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3)))))
332314, 330, 320, 331, 324ofrfval2 7112 . . . . . . . . . . . 12 (𝜑 → ((𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3)))) ∘𝑟𝐺 ↔ ∀𝑧 ∈ ℝ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3))) ≤ (𝐺𝑧)))
333332ad2antrr 717 . . . . . . . . . . 11 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → ((𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3)))) ∘𝑟𝐺 ↔ ∀𝑧 ∈ ℝ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3))) ≤ (𝐺𝑧)))
334313, 327, 3333imtr4d 285 . . . . . . . . . 10 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → ((𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺) → (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3)))) ∘𝑟𝐺))
335334impr 446 . . . . . . . . 9 (((𝜑 ∈ dom ∫1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺))) → (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3)))) ∘𝑟𝐺)
336 oveq2 6849 . . . . . . . . . . . . 13 (𝑑 = (𝑦 / 3) → (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑) = (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3)))
337336ifeq2d 4261 . . . . . . . . . . . 12 (𝑑 = (𝑦 / 3) → if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑)) = if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3))))
338337mpteq2dv 4903 . . . . . . . . . . 11 (𝑑 = (𝑦 / 3) → (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) = (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3)))))
339338breq1d 4818 . . . . . . . . . 10 (𝑑 = (𝑦 / 3) → ((𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺 ↔ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3)))) ∘𝑟𝐺))
340339rspcev 3460 . . . . . . . . 9 (((𝑦 / 3) ∈ ℝ+ ∧ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3)))) ∘𝑟𝐺) → ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺)
341139, 335, 340syl2anc 579 . . . . . . . 8 (((𝜑 ∈ dom ∫1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺))) → ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺)
34235ffvelrnda 6548 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,)+∞))
34350, 342sseldi 3758 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
34413ad2antlr 718 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝑦 / 3) ∈ ℝ+)
345343, 344rerpdivcld 12100 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) / (𝑦 / 3)) ∈ ℝ)
346 reflcl 12804 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑥) / (𝑦 / 3)) ∈ ℝ → (⌊‘((𝐹𝑥) / (𝑦 / 3))) ∈ ℝ)
347 peano2rem 10601 . . . . . . . . . . . . . . . . . 18 ((⌊‘((𝐹𝑥) / (𝑦 / 3))) ∈ ℝ → ((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) ∈ ℝ)
348345, 346, 3473syl 18 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) ∈ ℝ)
34957ad2antlr 718 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝑦 / 3) ∈ ℝ)
350348, 349remulcld 10323 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ∈ ℝ)
35196ffvelrnda 6548 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝑥) ∈ ℝ)
352350, 351ifcld 4287 . . . . . . . . . . . . . . 15 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)) ∈ ℝ)
353352recnd 10321 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)) ∈ ℂ)
354351recnd 10321 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝑥) ∈ ℂ)
355353, 354pncan3d 10648 . . . . . . . . . . . . 13 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)) + ((𝑥) − if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) = (𝑥))
356355mpteq2dva 4902 . . . . . . . . . . . 12 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ (if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)) + ((𝑥) − if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) = (𝑥 ∈ ℝ ↦ (𝑥)))
357351, 352resubcld 10711 . . . . . . . . . . . . 13 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((𝑥) − if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) ∈ ℝ)
358 eqidd 2765 . . . . . . . . . . . . 13 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) = (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))
35995feqmptd 6437 . . . . . . . . . . . . . . 15 ( ∈ dom ∫1 = (𝑥 ∈ ℝ ↦ (𝑥)))
360359ad2antlr 718 . . . . . . . . . . . . . 14 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → = (𝑥 ∈ ℝ ↦ (𝑥)))
361122, 351, 352, 360, 358offval2 7111 . . . . . . . . . . . . 13 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) = (𝑥 ∈ ℝ ↦ ((𝑥) − if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))))
362122, 352, 357, 358, 361offval2 7111 . . . . . . . . . . . 12 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) ∘𝑓 + (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) = (𝑥 ∈ ℝ ↦ (if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)) + ((𝑥) − if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))))
363356, 362, 3603eqtr4d 2808 . . . . . . . . . . 11 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) ∘𝑓 + (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) = )
364363fveq2d 6378 . . . . . . . . . 10 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → (∫1‘((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) ∘𝑓 + (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))))) = (∫1))
3653, 7itg1add 23758 . . . . . . . . . 10 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → (∫1‘((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) ∘𝑓 + (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))))) = ((∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) + (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))))))
366364, 365eqtr3d 2800 . . . . . . . . 9 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → (∫1) = ((∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) + (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))))))
367366adantrr 708 . . . . . . . 8 (((𝜑 ∈ dom ∫1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺))) → (∫1) = ((∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) + (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))))))
368 fvex 6387 . . . . . . . . 9 (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) ∈ V
369 fvex 6387 . . . . . . . . 9 (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) ∈ V
370 iba 523 . . . . . . . . . . . 12 (𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) → (∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹 ↔ (∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))))))
371 iba 523 . . . . . . . . . . . 12 (𝑢 = (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) → (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺 ↔ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))))))
372370, 371bi2anan9 629 . . . . . . . . . . 11 ((𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) ∧ 𝑢 = (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))))) → ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹 ∧ ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺) ↔ ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))))))))
373372bicomd 214 . . . . . . . . . 10 ((𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) ∧ 𝑢 = (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))))) → (((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))))) ↔ (∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹 ∧ ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺)))
374 oveq12 6850 . . . . . . . . . . 11 ((𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) ∧ 𝑢 = (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))))) → (𝑡 + 𝑢) = ((∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) + (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))))))
375374eqeq2d 2774 . . . . . . . . . 10 ((𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) ∧ 𝑢 = (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))))) → ((∫1) = (𝑡 + 𝑢) ↔ (∫1) = ((∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) + (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))))))
376373, 375anbi12d 624 . . . . . . . . 9 ((𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) ∧ 𝑢 = (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))))) → ((((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))))) ∧ (∫1) = (𝑡 + 𝑢)) ↔ ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹 ∧ ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺) ∧ (∫1) = ((∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) + (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))))))))
377368, 369, 376spc2ev 3452 . . . . . . . 8 (((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹 ∧ ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺) ∧ (∫1) = ((∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) + (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))))) → ∃𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))))) ∧ (∫1) = (𝑡 + 𝑢)))
378138, 341, 367, 377syl21anc 866 . . . . . . 7 (((𝜑 ∈ dom ∫1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺))) → ∃𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))))) ∧ (∫1) = (𝑡 + 𝑢)))
379 fveq1 6373 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) → (𝑓𝑧) = ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧))
380379eqeq1d 2766 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) → ((𝑓𝑧) = 0 ↔ ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0))
381379oveq1d 6856 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) → ((𝑓𝑧) + 𝑐) = (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))
382380, 381ifbieq2d 4267 . . . . . . . . . . . . . . 15 (𝑓 = (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) → if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) = if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐)))
383382mpteq2dv 4903 . . . . . . . . . . . . . 14 (𝑓 = (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) → (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) = (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))))
384383breq1d 4818 . . . . . . . . . . . . 13 (𝑓 = (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) → ((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹 ↔ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹))
385384rexbidv 3198 . . . . . . . . . . . 12 (𝑓 = (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) → (∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹 ↔ ∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹))
386 fveq2 6374 . . . . . . . . . . . . 13 (𝑓 = (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) → (∫1𝑓) = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))))
387386eqeq2d 2774 . . . . . . . . . . . 12 (𝑓 = (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) → (𝑡 = (∫1𝑓) ↔ 𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))))
388385, 387anbi12d 624 . . . . . . . . . . 11 (𝑓 = (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) → ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ↔ (∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))))))
389388anbi1d 623 . . . . . . . . . 10 (𝑓 = (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) → (((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ↔ ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔)))))
390389anbi1d 623 . . . . . . . . 9 (𝑓 = (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) → ((((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ (∫1) = (𝑡 + 𝑢)) ↔ (((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ (∫1) = (𝑡 + 𝑢))))
3913902exbidv 2019 . . . . . . . 8 (𝑓 = (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) → (∃𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ (∫1) = (𝑡 + 𝑢)) ↔ ∃𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ (∫1) = (𝑡 + 𝑢))))
392 fveq1 6373 . . . . . . . . . . . . . . . . 17 (𝑔 = (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) → (𝑔𝑧) = ((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧))
393392eqeq1d 2766 . . . . . . . . . . . . . . . 16 (𝑔 = (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) → ((𝑔𝑧) = 0 ↔ ((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0))
394392oveq1d 6856 . . . . . . . . . . . . . . . 16 (𝑔 = (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) → ((𝑔𝑧) + 𝑑) = (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))
395393, 394ifbieq2d 4267 . . . . . . . . . . . . . . 15 (𝑔 = (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) → if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) = if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑)))
396395mpteq2dv 4903 . . . . . . . . . . . . . 14 (𝑔 = (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) → (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) = (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))))
397396breq1d 4818 . . . . . . . . . . . . 13 (𝑔 = (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) → ((𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺 ↔ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺))
398397rexbidv 3198 . . . . . . . . . . . 12 (𝑔 = (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) → (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺 ↔ ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺))
399 fveq2 6374 . . . . . . . . . . . . 13 (𝑔 = (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) → (∫1𝑔) = (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))))
400399eqeq2d 2774 . . . . . . . . . . . 12 (𝑔 = (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) → (𝑢 = (∫1𝑔) ↔ 𝑢 = (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))))))
401398, 400anbi12d 624 . . . . . . . . . . 11 (𝑔 = (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) → ((∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔)) ↔ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))))))
402401anbi2d 622 . . . . . . . . . 10 (𝑔 = (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) → (((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ↔ ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))))))))
403402anbi1d 623 . . . . . . . . 9 (𝑔 = (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) → ((((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ (∫1) = (𝑡 + 𝑢)) ↔ (((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))))) ∧ (∫1) = (𝑡 + 𝑢))))
4044032exbidv 2019 . . . . . . . 8 (𝑔 = (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) → (∃𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ (∫1) = (𝑡 + 𝑢)) ↔ ∃𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))))) ∧ (∫1) = (𝑡 + 𝑢))))
405391, 404rspc2ev 3475 . . . . . . 7 (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) ∈ dom ∫1 ∧ (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) ∈ dom ∫1 ∧ ∃𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))))) ∧ (∫1) = (𝑡 + 𝑢))) → ∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ (∫1) = (𝑡 + 𝑢)))
4064, 8, 378, 405syl3anc 1490 . . . . . 6 (((𝜑 ∈ dom ∫1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺))) → ∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ (∫1) = (𝑡 + 𝑢)))
407 eqeq1 2768 . . . . . . . . 9 (𝑠 = (∫1) → (𝑠 = (𝑡 + 𝑢) ↔ (∫1) = (𝑡 + 𝑢)))
408407anbi2d 622 . . . . . . . 8 (𝑠 = (∫1) → ((((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ (((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ (∫1) = (𝑡 + 𝑢))))
4094082exbidv 2019 . . . . . . 7 (𝑠 = (∫1) → (∃𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ ∃𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ (∫1) = (𝑡 + 𝑢))))
4104092rexbidv 3203 . . . . . 6 (𝑠 = (∫1) → (∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ ∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ (∫1) = (𝑡 + 𝑢))))
411406, 410syl5ibrcom 238 . . . . 5 (((𝜑 ∈ dom ∫1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺))) → (𝑠 = (∫1) → ∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢))))
412411rexlimdvaa 3178 . . . 4 ((𝜑 ∈ dom ∫1) → (∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺) → (𝑠 = (∫1) → ∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))))
413412impd 398 . . 3 ((𝜑 ∈ dom ∫1) → ((∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺) ∧ 𝑠 = (∫1)) → ∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢))))
414413rexlimdva 3177 . 2 (𝜑 → (∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺) ∧ 𝑠 = (∫1)) → ∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢))))
415 rexcom4 3377 . . . . 5 (∃𝑔 ∈ dom ∫1𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ ∃𝑡𝑔 ∈ dom ∫1𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
416415rexbii 3187 . . . 4 (∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ ∃𝑓 ∈ dom ∫1𝑡𝑔 ∈ dom ∫1𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
417 rexcom4 3377 . . . 4 (∃𝑓 ∈ dom ∫1𝑡𝑔 ∈ dom ∫1𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ ∃𝑡𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
418416, 417bitri 266 . . 3 (∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ ∃𝑡𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
419 rexcom4 3377 . . . . . 6 (∃𝑔 ∈ dom ∫1𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ ∃𝑢𝑔 ∈ dom ∫1(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
420419rexbii 3187 . . . . 5 (∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ ∃𝑓 ∈ dom ∫1𝑢𝑔 ∈ dom ∫1(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
421 rexcom4 3377 . . . . 5 (∃𝑓 ∈ dom ∫1𝑢𝑔 ∈ dom ∫1(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ ∃𝑢𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
422420, 421bitri 266 . . . 4 (∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ ∃𝑢𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
423422exbii 1943 . . 3 (∃𝑡𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ ∃𝑡𝑢𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
424 r19.41vv 3237 . . . 4 (∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ (∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
4254242exbii 1944 . . 3 (∃𝑡𝑢𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ ∃𝑡𝑢(∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
426418, 423, 4253bitrri 289 . 2 (∃𝑡𝑢(∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ ∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
427414, 426syl6ibr 243 1 (𝜑 → (∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺) ∧ 𝑠 = (∫1)) → ∃𝑡𝑢(∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 873   = wceq 1652  wex 1874  wcel 2155  wne 2936  wral 3054  wrex 3055  Vcvv 3349  ifcif 4242   class class class wbr 4808  cmpt 4887  dom cdm 5276   Fn wfn 6062  wf 6063  cfv 6067  (class class class)co 6841  𝑓 cof 7092  𝑟 cofr 7093  cc 10186  cr 10187  0cc0 10188  1c1 10189   + caddc 10191   · cmul 10193  +∞cpnf 10324   < clt 10327  cle 10328  cmin 10519  -cneg 10520   / cdiv 10937  cn 11273  2c2 11326  3c3 11327  +crp 12027  [,)cico 12378  cfl 12798  MblFncmbf 23671  1citg1 23672  2citg2 23673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2349  ax-ext 2742  ax-rep 4929  ax-sep 4940  ax-nul 4948  ax-pow 5000  ax-pr 5061  ax-un 7146  ax-inf2 8752  ax-cnex 10244  ax-resscn 10245  ax-1cn 10246  ax-icn 10247  ax-addcl 10248  ax-addrcl 10249  ax-mulcl 10250  ax-mulrcl 10251  ax-mulcom 10252  ax-addass 10253  ax-mulass 10254  ax-distr 10255  ax-i2m1 10256  ax-1ne0 10257  ax-1rid 10258  ax-rnegex 10259  ax-rrecex 10260  ax-cnre 10261  ax-pre-lttri 10262  ax-pre-lttrn 10263  ax-pre-ltadd 10264  ax-pre-mulgt0 10265  ax-pre-sup 10266  ax-addf 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2564  df-eu 2581  df-clab 2751  df-cleq 2757  df-clel 2760  df-nfc 2895  df-ne 2937  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3351  df-sbc 3596  df-csb 3691  df-dif 3734  df-un 3736  df-in 3738  df-ss 3745  df-pss 3747  df-nul 4079  df-if 4243  df-pw 4316  df-sn 4334  df-pr 4336  df-tp 4338  df-op 4340  df-uni 4594  df-int 4633  df-iun 4677  df-disj 4777  df-br 4809  df-opab 4871  df-mpt 4888  df-tr 4911  df-id 5184  df-eprel 5189  df-po 5197  df-so 5198  df-fr 5235  df-se 5236  df-we 5237  df-xp 5282  df-rel 5283  df-cnv 5284  df-co 5285  df-dm 5286  df-rn 5287  df-res 5288  df-ima 5289  df-pred 5864  df-ord 5910  df-on 5911  df-lim 5912  df-suc 5913  df-iota 6030  df-fun 6069  df-fn 6070  df-f 6071  df-f1 6072  df-fo 6073  df-f1o 6074  df-fv 6075  df-isom 6076  df-riota 6802  df-ov 6844  df-oprab 6845  df-mpt2 6846  df-of 7094  df-ofr 7095  df-om 7263  df-1st 7365  df-2nd 7366  df-wrecs 7609  df-recs 7671  df-rdg 7709  df-1o 7763  df-2o 7764  df-oadd 7767  df-er 7946  df-map 8061  df-pm 8062  df-en 8160  df-dom 8161  df-sdom 8162  df-fin 8163  df-fi 8523  df-sup 8554  df-inf 8555  df-oi 8621  df-card 9015  df-cda 9242  df-pnf 10329  df-mnf 10330  df-xr 10331  df-ltxr 10332  df-le 10333  df-sub 10521  df-neg 10522  df-div 10938  df-nn 11274  df-2 11334  df-3 11335  df-n0 11538  df-z 11624  df-uz 11886  df-q 11989  df-rp 12028  df-xneg 12145  df-xadd 12146  df-xmul 12147  df-ioo 12380  df-ico 12382  df-icc 12383  df-fz 12533  df-fzo 12673  df-fl 12800  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14125  df-re 14126  df-im 14127  df-sqrt 14261  df-abs 14262  df-clim 14505  df-sum 14703  df-rest 16350  df-topgen 16371  df-psmet 20010  df-xmet 20011  df-met 20012  df-bl 20013  df-mopn 20014  df-top 20977  df-topon 20994  df-bases 21029  df-cmp 21469  df-ovol 23521  df-vol 23522  df-mbf 23676  df-itg1 23677
This theorem is referenced by:  itg2addnc  33819
  Copyright terms: Public domain W3C validator