Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itg2addnclem3 Structured version   Visualization version   GIF version

Theorem itg2addnclem3 34497
Description: Lemma incomprehensible in isolation split off to shorten proof of itg2addnc 34498. (Contributed by Brendan Leahy, 11-Mar-2018.)
Hypotheses
Ref Expression
itg2addnc.f1 (𝜑𝐹 ∈ MblFn)
itg2addnc.f2 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2addnc.f3 (𝜑 → (∫2𝐹) ∈ ℝ)
itg2addnc.g2 (𝜑𝐺:ℝ⟶(0[,)+∞))
itg2addnc.g3 (𝜑 → (∫2𝐺) ∈ ℝ)
Assertion
Ref Expression
itg2addnclem3 (𝜑 → (∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺) ∧ 𝑠 = (∫1)) → ∃𝑡𝑢(∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢))))
Distinct variable groups:   𝑡,𝑠,𝑢,𝑦,𝑧,𝑓,𝑔,,𝑐,𝑑,𝐹   𝐺,𝑠,𝑡,𝑢,𝑦,𝑧,𝑓,𝑔,,𝑐,𝑑   𝜑,𝑠,𝑡,𝑢,𝑦,𝑧,𝑓,𝑔,,𝑐,𝑑

Proof of Theorem itg2addnclem3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 itg2addnc.f1 . . . . . . . . 9 (𝜑𝐹 ∈ MblFn)
2 itg2addnc.f2 . . . . . . . . 9 (𝜑𝐹:ℝ⟶(0[,)+∞))
31, 2itg2addnclem2 34496 . . . . . . . 8 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) ∈ dom ∫1)
43adantrr 713 . . . . . . 7 (((𝜑 ∈ dom ∫1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺))) → (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) ∈ dom ∫1)
5 simplr 765 . . . . . . . . 9 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → ∈ dom ∫1)
6 i1fsub 23996 . . . . . . . . 9 (( ∈ dom ∫1 ∧ (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) ∈ dom ∫1) → (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) ∈ dom ∫1)
75, 3, 6syl2anc 584 . . . . . . . 8 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) ∈ dom ∫1)
87adantrr 713 . . . . . . 7 (((𝜑 ∈ dom ∫1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺))) → (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) ∈ dom ∫1)
9 3nn 11570 . . . . . . . . . . . . 13 3 ∈ ℕ
10 nnrp 12254 . . . . . . . . . . . . 13 (3 ∈ ℕ → 3 ∈ ℝ+)
119, 10ax-mp 5 . . . . . . . . . . . 12 3 ∈ ℝ+
12 rpdivcl 12268 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (𝑦 / 3) ∈ ℝ+)
1311, 12mpan2 687 . . . . . . . . . . 11 (𝑦 ∈ ℝ+ → (𝑦 / 3) ∈ ℝ+)
1413adantl 482 . . . . . . . . . 10 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → (𝑦 / 3) ∈ ℝ+)
15 fveq2 6545 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
1615fvoveq1d 7045 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑧 → (⌊‘((𝐹𝑥) / (𝑦 / 3))) = (⌊‘((𝐹𝑧) / (𝑦 / 3))))
1716oveq1d 7038 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑧 → ((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) = ((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1))
1817oveq1d 7038 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑧 → (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) = (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)))
19 fveq2 6545 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑧 → (𝑥) = (𝑧))
2018, 19breq12d 4981 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → ((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ↔ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧)))
2119neeq1d 3045 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → ((𝑥) ≠ 0 ↔ (𝑧) ≠ 0))
2220, 21anbi12d 630 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ↔ ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0)))
2322, 18, 19ifbieq12d 4414 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)) = if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)))
24 eqid 2797 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) = (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))
25 ovex 7055 . . . . . . . . . . . . . . . . . 18 (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ∈ V
26 fvex 6558 . . . . . . . . . . . . . . . . . 18 (𝑧) ∈ V
2725, 26ifex 4435 . . . . . . . . . . . . . . . . 17 if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) ∈ V
2823, 24, 27fvmpt 6642 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ℝ → ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)))
2928eqeq1d 2799 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℝ → (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0 ↔ if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) = 0))
3028oveq1d 7038 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℝ → (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + (𝑦 / 3)) = (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) + (𝑦 / 3)))
3129, 30ifbieq2d 4412 . . . . . . . . . . . . . 14 (𝑧 ∈ ℝ → if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + (𝑦 / 3))) = if(if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) = 0, 0, (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) + (𝑦 / 3))))
3231adantl 482 . . . . . . . . . . . . 13 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + (𝑦 / 3))) = if(if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) = 0, 0, (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) + (𝑦 / 3))))
33 breq1 4971 . . . . . . . . . . . . . 14 (0 = if(if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) = 0, 0, (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) + (𝑦 / 3))) → (0 ≤ (𝐹𝑧) ↔ if(if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) = 0, 0, (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) + (𝑦 / 3))) ≤ (𝐹𝑧)))
34 breq1 4971 . . . . . . . . . . . . . 14 ((if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) + (𝑦 / 3)) = if(if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) = 0, 0, (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) + (𝑦 / 3))) → ((if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) + (𝑦 / 3)) ≤ (𝐹𝑧) ↔ if(if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) = 0, 0, (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) + (𝑦 / 3))) ≤ (𝐹𝑧)))
352ad2antrr 722 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → 𝐹:ℝ⟶(0[,)+∞))
3635ffvelrnda 6723 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (𝐹𝑧) ∈ (0[,)+∞))
37 elrege0 12696 . . . . . . . . . . . . . . . . 17 ((𝐹𝑧) ∈ (0[,)+∞) ↔ ((𝐹𝑧) ∈ ℝ ∧ 0 ≤ (𝐹𝑧)))
3836, 37sylib 219 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝐹𝑧) ∈ ℝ ∧ 0 ≤ (𝐹𝑧)))
3938simprd 496 . . . . . . . . . . . . . . 15 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → 0 ≤ (𝐹𝑧))
4039adantr 481 . . . . . . . . . . . . . 14 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) = 0) → 0 ≤ (𝐹𝑧))
41 df-ne 2987 . . . . . . . . . . . . . . . 16 (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) ≠ 0 ↔ ¬ if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) = 0)
42 neeq1 3048 . . . . . . . . . . . . . . . . . 18 ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) = if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≠ 0 ↔ if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) ≠ 0))
43 oveq1 7030 . . . . . . . . . . . . . . . . . . 19 ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) = if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) + (𝑦 / 3)) = (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) + (𝑦 / 3)))
4443breq1d 4978 . . . . . . . . . . . . . . . . . 18 ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) = if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) → (((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) + (𝑦 / 3)) ≤ (𝐹𝑧) ↔ (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) + (𝑦 / 3)) ≤ (𝐹𝑧)))
4542, 44imbi12d 346 . . . . . . . . . . . . . . . . 17 ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) = if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) → (((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≠ 0 → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) + (𝑦 / 3)) ≤ (𝐹𝑧)) ↔ (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) ≠ 0 → (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) + (𝑦 / 3)) ≤ (𝐹𝑧))))
46 neeq1 3048 . . . . . . . . . . . . . . . . . 18 ((𝑧) = if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) → ((𝑧) ≠ 0 ↔ if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) ≠ 0))
47 oveq1 7030 . . . . . . . . . . . . . . . . . . 19 ((𝑧) = if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) → ((𝑧) + (𝑦 / 3)) = (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) + (𝑦 / 3)))
4847breq1d 4978 . . . . . . . . . . . . . . . . . 18 ((𝑧) = if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) → (((𝑧) + (𝑦 / 3)) ≤ (𝐹𝑧) ↔ (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) + (𝑦 / 3)) ≤ (𝐹𝑧)))
4946, 48imbi12d 346 . . . . . . . . . . . . . . . . 17 ((𝑧) = if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) → (((𝑧) ≠ 0 → ((𝑧) + (𝑦 / 3)) ≤ (𝐹𝑧)) ↔ (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) ≠ 0 → (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) + (𝑦 / 3)) ≤ (𝐹𝑧))))
50 rge0ssre 12698 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0[,)+∞) ⊆ ℝ
5150, 36sseldi 3893 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (𝐹𝑧) ∈ ℝ)
5213ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (𝑦 / 3) ∈ ℝ+)
5351, 52rerpdivcld 12316 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝐹𝑧) / (𝑦 / 3)) ∈ ℝ)
54 reflcl 13020 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹𝑧) / (𝑦 / 3)) ∈ ℝ → (⌊‘((𝐹𝑧) / (𝑦 / 3))) ∈ ℝ)
55 peano2rem 10807 . . . . . . . . . . . . . . . . . . . . . . 23 ((⌊‘((𝐹𝑧) / (𝑦 / 3))) ∈ ℝ → ((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) ∈ ℝ)
5653, 54, 553syl 18 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) ∈ ℝ)
5713rpred 12285 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ℝ+ → (𝑦 / 3) ∈ ℝ)
5857ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (𝑦 / 3) ∈ ℝ)
5956, 58remulcld 10524 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ∈ ℝ)
60 peano2rem 10807 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹𝑧) / (𝑦 / 3)) ∈ ℝ → (((𝐹𝑧) / (𝑦 / 3)) − 1) ∈ ℝ)
6153, 60syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((𝐹𝑧) / (𝑦 / 3)) − 1) ∈ ℝ)
6261, 58remulcld 10524 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((𝐹𝑧) / (𝑦 / 3)) − 1) · (𝑦 / 3)) ∈ ℝ)
6353, 54syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (⌊‘((𝐹𝑧) / (𝑦 / 3))) ∈ ℝ)
64 1red 10495 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → 1 ∈ ℝ)
65 flle 13023 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐹𝑧) / (𝑦 / 3)) ∈ ℝ → (⌊‘((𝐹𝑧) / (𝑦 / 3))) ≤ ((𝐹𝑧) / (𝑦 / 3)))
6653, 65syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (⌊‘((𝐹𝑧) / (𝑦 / 3))) ≤ ((𝐹𝑧) / (𝑦 / 3)))
6763, 53, 64, 66lesub1dd 11110 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) ≤ (((𝐹𝑧) / (𝑦 / 3)) − 1))
6856, 61, 52lemul1d 12328 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) ≤ (((𝐹𝑧) / (𝑦 / 3)) − 1) ↔ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ ((((𝐹𝑧) / (𝑦 / 3)) − 1) · (𝑦 / 3))))
6967, 68mpbid 233 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ ((((𝐹𝑧) / (𝑦 / 3)) − 1) · (𝑦 / 3)))
7059, 62, 58, 69leadd1dd 11108 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) + (𝑦 / 3)) ≤ (((((𝐹𝑧) / (𝑦 / 3)) − 1) · (𝑦 / 3)) + (𝑦 / 3)))
7153recnd 10522 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝐹𝑧) / (𝑦 / 3)) ∈ ℂ)
72 ax-1cn 10448 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℂ
73 subcl 10738 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐹𝑧) / (𝑦 / 3)) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐹𝑧) / (𝑦 / 3)) − 1) ∈ ℂ)
7471, 72, 73sylancl 586 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((𝐹𝑧) / (𝑦 / 3)) − 1) ∈ ℂ)
7572a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → 1 ∈ ℂ)
7652rpcnd 12287 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (𝑦 / 3) ∈ ℂ)
7774, 75, 76adddird 10519 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((((𝐹𝑧) / (𝑦 / 3)) − 1) + 1) · (𝑦 / 3)) = (((((𝐹𝑧) / (𝑦 / 3)) − 1) · (𝑦 / 3)) + (1 · (𝑦 / 3))))
78 npcan 10749 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐹𝑧) / (𝑦 / 3)) ∈ ℂ ∧ 1 ∈ ℂ) → ((((𝐹𝑧) / (𝑦 / 3)) − 1) + 1) = ((𝐹𝑧) / (𝑦 / 3)))
7971, 72, 78sylancl 586 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((𝐹𝑧) / (𝑦 / 3)) − 1) + 1) = ((𝐹𝑧) / (𝑦 / 3)))
8079oveq1d 7038 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((((𝐹𝑧) / (𝑦 / 3)) − 1) + 1) · (𝑦 / 3)) = (((𝐹𝑧) / (𝑦 / 3)) · (𝑦 / 3)))
8176mulid2d 10512 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (1 · (𝑦 / 3)) = (𝑦 / 3))
8281oveq2d 7039 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((((𝐹𝑧) / (𝑦 / 3)) − 1) · (𝑦 / 3)) + (1 · (𝑦 / 3))) = (((((𝐹𝑧) / (𝑦 / 3)) − 1) · (𝑦 / 3)) + (𝑦 / 3)))
8377, 80, 823eqtr3rd 2842 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((((𝐹𝑧) / (𝑦 / 3)) − 1) · (𝑦 / 3)) + (𝑦 / 3)) = (((𝐹𝑧) / (𝑦 / 3)) · (𝑦 / 3)))
8451recnd 10522 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (𝐹𝑧) ∈ ℂ)
8552rpne0d 12290 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (𝑦 / 3) ≠ 0)
8684, 76, 85divcan1d 11271 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((𝐹𝑧) / (𝑦 / 3)) · (𝑦 / 3)) = (𝐹𝑧))
8783, 86eqtrd 2833 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((((𝐹𝑧) / (𝑦 / 3)) − 1) · (𝑦 / 3)) + (𝑦 / 3)) = (𝐹𝑧))
8870, 87breqtrd 4994 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) + (𝑦 / 3)) ≤ (𝐹𝑧))
8988adantr 481 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0)) → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) + (𝑦 / 3)) ≤ (𝐹𝑧))
9089a1d 25 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0)) → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≠ 0 → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) + (𝑦 / 3)) ≤ (𝐹𝑧)))
91 ianor 976 . . . . . . . . . . . . . . . . . . . . 21 (¬ ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0) ↔ (¬ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∨ ¬ (𝑧) ≠ 0))
9291anbi1i 623 . . . . . . . . . . . . . . . . . . . 20 ((¬ ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0) ∧ (𝑧) ≠ 0) ↔ ((¬ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∨ ¬ (𝑧) ≠ 0) ∧ (𝑧) ≠ 0))
93 oranabs 994 . . . . . . . . . . . . . . . . . . . 20 (((¬ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∨ ¬ (𝑧) ≠ 0) ∧ (𝑧) ≠ 0) ↔ (¬ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0))
9492, 93bitri 276 . . . . . . . . . . . . . . . . . . 19 ((¬ ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0) ∧ (𝑧) ≠ 0) ↔ (¬ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0))
95 i1ff 23964 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( ∈ dom ∫1:ℝ⟶ℝ)
9695ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → :ℝ⟶ℝ)
9796ffvelrnda 6723 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (𝑧) ∈ ℝ)
9897, 58readdcld 10523 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝑧) + (𝑦 / 3)) ∈ ℝ)
9998adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ¬ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧)) → ((𝑧) + (𝑦 / 3)) ∈ ℝ)
10051adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ¬ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧)) → (𝐹𝑧) ∈ ℝ)
10159, 58readdcld 10523 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) + (𝑦 / 3)) ∈ ℝ)
102101adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ¬ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧)) → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) + (𝑦 / 3)) ∈ ℝ)
10397adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ¬ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧)) → (𝑧) ∈ ℝ)
10459adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ¬ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧)) → (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ∈ ℝ)
10557ad3antlr 727 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ¬ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧)) → (𝑦 / 3) ∈ ℝ)
10697, 59ltnled 10640 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝑧) < (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ↔ ¬ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧)))
107106biimpar 478 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ¬ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧)) → (𝑧) < (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)))
108103, 104, 105, 107ltadd1dd 11105 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ¬ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧)) → ((𝑧) + (𝑦 / 3)) < ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) + (𝑦 / 3)))
10988adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ¬ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧)) → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) + (𝑦 / 3)) ≤ (𝐹𝑧))
11099, 102, 100, 108, 109ltletrd 10653 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ¬ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧)) → ((𝑧) + (𝑦 / 3)) < (𝐹𝑧))
11199, 100, 110ltled 10641 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ¬ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧)) → ((𝑧) + (𝑦 / 3)) ≤ (𝐹𝑧))
112111adantrr 713 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (¬ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0)) → ((𝑧) + (𝑦 / 3)) ≤ (𝐹𝑧))
11394, 112sylan2b 593 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (¬ ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0) ∧ (𝑧) ≠ 0)) → ((𝑧) + (𝑦 / 3)) ≤ (𝐹𝑧))
114113expr 457 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ¬ ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0)) → ((𝑧) ≠ 0 → ((𝑧) + (𝑦 / 3)) ≤ (𝐹𝑧)))
11545, 49, 90, 114ifbothda 4424 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) ≠ 0 → (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) + (𝑦 / 3)) ≤ (𝐹𝑧)))
11641, 115syl5bir 244 . . . . . . . . . . . . . . 15 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (¬ if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) = 0 → (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) + (𝑦 / 3)) ≤ (𝐹𝑧)))
117116imp 407 . . . . . . . . . . . . . 14 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ¬ if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) = 0) → (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) + (𝑦 / 3)) ≤ (𝐹𝑧))
11833, 34, 40, 117ifbothda 4424 . . . . . . . . . . . . 13 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → if(if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) = 0, 0, (if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) + (𝑦 / 3))) ≤ (𝐹𝑧))
11932, 118eqbrtrd 4990 . . . . . . . . . . . 12 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + (𝑦 / 3))) ≤ (𝐹𝑧))
120119ralrimiva 3151 . . . . . . . . . . 11 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → ∀𝑧 ∈ ℝ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + (𝑦 / 3))) ≤ (𝐹𝑧))
121 reex 10481 . . . . . . . . . . . . 13 ℝ ∈ V
122121a1i 11 . . . . . . . . . . . 12 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → ℝ ∈ V)
123 c0ex 10488 . . . . . . . . . . . . . 14 0 ∈ V
124 ovex 7055 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + (𝑦 / 3)) ∈ V
125123, 124ifex 4435 . . . . . . . . . . . . 13 if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + (𝑦 / 3))) ∈ V
126125a1i 11 . . . . . . . . . . . 12 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + (𝑦 / 3))) ∈ V)
127 eqidd 2798 . . . . . . . . . . . 12 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + (𝑦 / 3)))) = (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + (𝑦 / 3)))))
1282feqmptd 6608 . . . . . . . . . . . . 13 (𝜑𝐹 = (𝑧 ∈ ℝ ↦ (𝐹𝑧)))
129128ad2antrr 722 . . . . . . . . . . . 12 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → 𝐹 = (𝑧 ∈ ℝ ↦ (𝐹𝑧)))
130122, 126, 36, 127, 129ofrfval2 7292 . . . . . . . . . . 11 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → ((𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + (𝑦 / 3)))) ∘𝑟𝐹 ↔ ∀𝑧 ∈ ℝ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + (𝑦 / 3))) ≤ (𝐹𝑧)))
131120, 130mpbird 258 . . . . . . . . . 10 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + (𝑦 / 3)))) ∘𝑟𝐹)
132 oveq2 7031 . . . . . . . . . . . . . 14 (𝑐 = (𝑦 / 3) → (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐) = (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + (𝑦 / 3)))
133132ifeq2d 4406 . . . . . . . . . . . . 13 (𝑐 = (𝑦 / 3) → if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐)) = if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + (𝑦 / 3))))
134133mpteq2dv 5063 . . . . . . . . . . . 12 (𝑐 = (𝑦 / 3) → (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) = (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + (𝑦 / 3)))))
135134breq1d 4978 . . . . . . . . . . 11 (𝑐 = (𝑦 / 3) → ((𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹 ↔ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + (𝑦 / 3)))) ∘𝑟𝐹))
136135rspcev 3561 . . . . . . . . . 10 (((𝑦 / 3) ∈ ℝ+ ∧ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + (𝑦 / 3)))) ∘𝑟𝐹) → ∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹)
13714, 131, 136syl2anc 584 . . . . . . . . 9 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → ∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹)
138137adantrr 713 . . . . . . . 8 (((𝜑 ∈ dom ∫1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺))) → ∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹)
13913ad2antrl 724 . . . . . . . . 9 (((𝜑 ∈ dom ∫1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺))) → (𝑦 / 3) ∈ ℝ+)
14095ffnd 6390 . . . . . . . . . . . . . . . . . . 19 ( ∈ dom ∫1 Fn ℝ)
141140ad2antlr 723 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → Fn ℝ)
142 ovex 7055 . . . . . . . . . . . . . . . . . . . . 21 (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ∈ V
143 fvex 6558 . . . . . . . . . . . . . . . . . . . . 21 (𝑥) ∈ V
144142, 143ifex 4435 . . . . . . . . . . . . . . . . . . . 20 if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)) ∈ V
145144, 24fnmpti 6366 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) Fn ℝ
146145a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) Fn ℝ)
147 inidm 4121 . . . . . . . . . . . . . . . . . 18 (ℝ ∩ ℝ) = ℝ
148 eqidd 2798 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (𝑧) = (𝑧))
14928adantl 482 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)))
150141, 146, 122, 122, 147, 148, 149ofval 7283 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))))
151150eqeq1d 2799 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0 ↔ ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0))
152150oveq1d 7038 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3)) = (((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) + (𝑦 / 3)))
153151, 152ifbieq2d 4412 . . . . . . . . . . . . . . 15 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3))) = if(((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0, 0, (((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) + (𝑦 / 3))))
154153adantr 481 . . . . . . . . . . . . . 14 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧))) → if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3))) = if(((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0, 0, (((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) + (𝑦 / 3))))
155 breq1 4971 . . . . . . . . . . . . . . 15 (0 = if(((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0, 0, (((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) + (𝑦 / 3))) → (0 ≤ (𝐺𝑧) ↔ if(((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0, 0, (((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) + (𝑦 / 3))) ≤ (𝐺𝑧)))
156 breq1 4971 . . . . . . . . . . . . . . 15 ((((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) + (𝑦 / 3)) = if(((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0, 0, (((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) + (𝑦 / 3))) → ((((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) + (𝑦 / 3)) ≤ (𝐺𝑧) ↔ if(((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0, 0, (((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) + (𝑦 / 3))) ≤ (𝐺𝑧)))
157 itg2addnc.g2 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐺:ℝ⟶(0[,)+∞))
158157ad2antrr 722 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → 𝐺:ℝ⟶(0[,)+∞))
159158ffvelrnda 6723 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (𝐺𝑧) ∈ (0[,)+∞))
160 elrege0 12696 . . . . . . . . . . . . . . . . . 18 ((𝐺𝑧) ∈ (0[,)+∞) ↔ ((𝐺𝑧) ∈ ℝ ∧ 0 ≤ (𝐺𝑧)))
161159, 160sylib 219 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝐺𝑧) ∈ ℝ ∧ 0 ≤ (𝐺𝑧)))
162161simprd 496 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → 0 ≤ (𝐺𝑧))
163162ad2antrr 722 . . . . . . . . . . . . . . 15 ((((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧))) ∧ ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0) → 0 ≤ (𝐺𝑧))
164 oveq2 7031 . . . . . . . . . . . . . . . . . 18 ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) = if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) → ((𝑧) − (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3))) = ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))))
165164oveq1d 7038 . . . . . . . . . . . . . . . . 17 ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) = if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) → (((𝑧) − (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3))) + (𝑦 / 3)) = (((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) + (𝑦 / 3)))
166165breq1d 4978 . . . . . . . . . . . . . . . 16 ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) = if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) → ((((𝑧) − (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3))) + (𝑦 / 3)) ≤ (𝐺𝑧) ↔ (((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) + (𝑦 / 3)) ≤ (𝐺𝑧)))
167 oveq2 7031 . . . . . . . . . . . . . . . . . 18 ((𝑧) = if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) → ((𝑧) − (𝑧)) = ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))))
168167oveq1d 7038 . . . . . . . . . . . . . . . . 17 ((𝑧) = if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) → (((𝑧) − (𝑧)) + (𝑦 / 3)) = (((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) + (𝑦 / 3)))
169168breq1d 4978 . . . . . . . . . . . . . . . 16 ((𝑧) = if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) → ((((𝑧) − (𝑧)) + (𝑦 / 3)) ≤ (𝐺𝑧) ↔ (((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) + (𝑦 / 3)) ≤ (𝐺𝑧)))
170 id 22 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧) = 0 → (𝑧) = 0)
171 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0) → (𝑧) ≠ 0)
172171necon2bi 3016 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑧) = 0 → ¬ ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0))
173 iffalse 4396 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (¬ ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0) → if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) = (𝑧))
174172, 173syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧) = 0 → if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) = (𝑧))
175174, 170eqtrd 2833 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧) = 0 → if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧)) = 0)
176170, 175oveq12d 7041 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧) = 0 → ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = (0 − 0))
177 0m0e0 11611 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 − 0) = 0
178176, 177syl6eq 2849 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧) = 0 → ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0)
179178con3i 157 . . . . . . . . . . . . . . . . . . . . . 22 (¬ ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0 → ¬ (𝑧) = 0)
180 iffalse 4396 . . . . . . . . . . . . . . . . . . . . . . 23 (¬ (𝑧) = 0 → if((𝑧) = 0, 0, ((𝑧) + 𝑦)) = ((𝑧) + 𝑦))
181180breq1d 4978 . . . . . . . . . . . . . . . . . . . . . 22 (¬ (𝑧) = 0 → (if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧)) ↔ ((𝑧) + 𝑦) ≤ ((𝐹𝑧) + (𝐺𝑧))))
182179, 181syl 17 . . . . . . . . . . . . . . . . . . . . 21 (¬ ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0 → (if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧)) ↔ ((𝑧) + 𝑦) ≤ ((𝐹𝑧) + (𝐺𝑧))))
183182adantl 482 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ¬ ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0) → (if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧)) ↔ ((𝑧) + 𝑦) ≤ ((𝐹𝑧) + (𝐺𝑧))))
18497recnd 10522 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (𝑧) ∈ ℂ)
18559recnd 10522 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ∈ ℂ)
186184, 185, 76subsubd 10879 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝑧) − ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) = (((𝑧) − (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3))) + (𝑦 / 3)))
187186adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ((𝑧) + 𝑦) ≤ ((𝐹𝑧) + (𝐺𝑧))) → ((𝑧) − ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) = (((𝑧) − (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3))) + (𝑦 / 3)))
18859, 58resubcld 10922 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3)) ∈ ℝ)
189 rpre 12251 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
190189ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → 𝑦 ∈ ℝ)
191188, 190readdcld 10523 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3)) + 𝑦) ∈ ℝ)
19250, 159sseldi 3893 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (𝐺𝑧) ∈ ℝ)
193 1re 10494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1 ∈ ℝ
194193, 193readdcli 10509 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (1 + 1) ∈ ℝ
195 resubcl 10804 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝐹𝑧) / (𝑦 / 3)) ∈ ℝ ∧ (1 + 1) ∈ ℝ) → (((𝐹𝑧) / (𝑦 / 3)) − (1 + 1)) ∈ ℝ)
19653, 194, 195sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((𝐹𝑧) / (𝑦 / 3)) − (1 + 1)) ∈ ℝ)
197196, 58remulcld 10524 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((𝐹𝑧) / (𝑦 / 3)) − (1 + 1)) · (𝑦 / 3)) ∈ ℝ)
198 peano2re 10666 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((⌊‘((𝐹𝑧) / (𝑦 / 3))) ∈ ℝ → ((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) ∈ ℝ)
19963, 198syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) ∈ ℝ)
200 resubcl 10804 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) ∈ ℝ ∧ (1 + 1) ∈ ℝ) → (((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − (1 + 1)) ∈ ℝ)
201199, 194, 200sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − (1 + 1)) ∈ ℝ)
202201, 58remulcld 10524 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − (1 + 1)) · (𝑦 / 3)) ∈ ℝ)
20357, 189resubcld 10922 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 ∈ ℝ+ → ((𝑦 / 3) − 𝑦) ∈ ℝ)
204203ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝑦 / 3) − 𝑦) ∈ ℝ)
205194a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (1 + 1) ∈ ℝ)
206 fllep1 13025 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝐹𝑧) / (𝑦 / 3)) ∈ ℝ → ((𝐹𝑧) / (𝑦 / 3)) ≤ ((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1))
20753, 206syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝐹𝑧) / (𝑦 / 3)) ≤ ((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1))
20853, 199, 205, 207lesub1dd 11110 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((𝐹𝑧) / (𝑦 / 3)) − (1 + 1)) ≤ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − (1 + 1)))
209196, 201, 52lemul1d 12328 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((𝐹𝑧) / (𝑦 / 3)) − (1 + 1)) ≤ (((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − (1 + 1)) ↔ ((((𝐹𝑧) / (𝑦 / 3)) − (1 + 1)) · (𝑦 / 3)) ≤ ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − (1 + 1)) · (𝑦 / 3))))
210208, 209mpbid 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((𝐹𝑧) / (𝑦 / 3)) − (1 + 1)) · (𝑦 / 3)) ≤ ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − (1 + 1)) · (𝑦 / 3)))
211197, 202, 204, 210lesub1dd 11110 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((((𝐹𝑧) / (𝑦 / 3)) − (1 + 1)) · (𝑦 / 3)) − ((𝑦 / 3) − 𝑦)) ≤ (((((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − (1 + 1)) · (𝑦 / 3)) − ((𝑦 / 3) − 𝑦)))
21272, 72addcli 10500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (1 + 1) ∈ ℂ
213212negcli 10808 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 -(1 + 1) ∈ ℂ
214213a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → -(1 + 1) ∈ ℂ)
21571, 214, 76adddird 10519 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((𝐹𝑧) / (𝑦 / 3)) + -(1 + 1)) · (𝑦 / 3)) = ((((𝐹𝑧) / (𝑦 / 3)) · (𝑦 / 3)) + (-(1 + 1) · (𝑦 / 3))))
216 negsub 10788 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝐹𝑧) / (𝑦 / 3)) ∈ ℂ ∧ (1 + 1) ∈ ℂ) → (((𝐹𝑧) / (𝑦 / 3)) + -(1 + 1)) = (((𝐹𝑧) / (𝑦 / 3)) − (1 + 1)))
21771, 212, 216sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((𝐹𝑧) / (𝑦 / 3)) + -(1 + 1)) = (((𝐹𝑧) / (𝑦 / 3)) − (1 + 1)))
218217oveq1d 7038 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((𝐹𝑧) / (𝑦 / 3)) + -(1 + 1)) · (𝑦 / 3)) = ((((𝐹𝑧) / (𝑦 / 3)) − (1 + 1)) · (𝑦 / 3)))
219 df-2 11554 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2 = (1 + 1)
220219negeqi 10732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 -2 = -(1 + 1)
221220oveq1i 7033 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (-2 · (𝑦 / 3)) = (-(1 + 1) · (𝑦 / 3))
222 2cn 11566 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2 ∈ ℂ
22313rpcnd 12287 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑦 ∈ ℝ+ → (𝑦 / 3) ∈ ℂ)
224 mulneg1 10930 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((2 ∈ ℂ ∧ (𝑦 / 3) ∈ ℂ) → (-2 · (𝑦 / 3)) = -(2 · (𝑦 / 3)))
225222, 223, 224sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 ∈ ℝ+ → (-2 · (𝑦 / 3)) = -(2 · (𝑦 / 3)))
226221, 225syl5eqr 2847 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 ∈ ℝ+ → (-(1 + 1) · (𝑦 / 3)) = -(2 · (𝑦 / 3)))
227226ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (-(1 + 1) · (𝑦 / 3)) = -(2 · (𝑦 / 3)))
22886, 227oveq12d 7041 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((𝐹𝑧) / (𝑦 / 3)) · (𝑦 / 3)) + (-(1 + 1) · (𝑦 / 3))) = ((𝐹𝑧) + -(2 · (𝑦 / 3))))
229215, 218, 2283eqtr3d 2841 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((𝐹𝑧) / (𝑦 / 3)) − (1 + 1)) · (𝑦 / 3)) = ((𝐹𝑧) + -(2 · (𝑦 / 3))))
230 rpcn 12253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 ∈ ℝ+𝑦 ∈ ℂ)
231230, 223negsubdi2d 10867 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 ∈ ℝ+ → -(𝑦 − (𝑦 / 3)) = ((𝑦 / 3) − 𝑦))
232 3cn 11572 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3 ∈ ℂ
233 3ne0 11597 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3 ≠ 0
234 divcan2 11160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑦 ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → (3 · (𝑦 / 3)) = 𝑦)
235232, 233, 234mp3an23 1445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑦 ∈ ℂ → (3 · (𝑦 / 3)) = 𝑦)
236230, 235syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑦 ∈ ℝ+ → (3 · (𝑦 / 3)) = 𝑦)
237223mulid2d 10512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑦 ∈ ℝ+ → (1 · (𝑦 / 3)) = (𝑦 / 3))
238236, 237oveq12d 7041 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 ∈ ℝ+ → ((3 · (𝑦 / 3)) − (1 · (𝑦 / 3))) = (𝑦 − (𝑦 / 3)))
239 3m1e2 11619 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (3 − 1) = 2
240239oveq1i 7033 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((3 − 1) · (𝑦 / 3)) = (2 · (𝑦 / 3))
241 subdir 10928 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((3 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑦 / 3) ∈ ℂ) → ((3 − 1) · (𝑦 / 3)) = ((3 · (𝑦 / 3)) − (1 · (𝑦 / 3))))
242232, 72, 241mp3an12 1443 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑦 / 3) ∈ ℂ → ((3 − 1) · (𝑦 / 3)) = ((3 · (𝑦 / 3)) − (1 · (𝑦 / 3))))
243223, 242syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑦 ∈ ℝ+ → ((3 − 1) · (𝑦 / 3)) = ((3 · (𝑦 / 3)) − (1 · (𝑦 / 3))))
244240, 243syl5reqr 2848 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 ∈ ℝ+ → ((3 · (𝑦 / 3)) − (1 · (𝑦 / 3))) = (2 · (𝑦 / 3)))
245238, 244eqtr3d 2835 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 ∈ ℝ+ → (𝑦 − (𝑦 / 3)) = (2 · (𝑦 / 3)))
246245negeqd 10733 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 ∈ ℝ+ → -(𝑦 − (𝑦 / 3)) = -(2 · (𝑦 / 3)))
247231, 246eqtr3d 2835 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 ∈ ℝ+ → ((𝑦 / 3) − 𝑦) = -(2 · (𝑦 / 3)))
248247ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝑦 / 3) − 𝑦) = -(2 · (𝑦 / 3)))
249229, 248oveq12d 7041 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((((𝐹𝑧) / (𝑦 / 3)) − (1 + 1)) · (𝑦 / 3)) − ((𝑦 / 3) − 𝑦)) = (((𝐹𝑧) + -(2 · (𝑦 / 3))) − -(2 · (𝑦 / 3))))
250 rpcn 12253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑦 / 3) ∈ ℝ+ → (𝑦 / 3) ∈ ℂ)
251 mulcl 10474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((2 ∈ ℂ ∧ (𝑦 / 3) ∈ ℂ) → (2 · (𝑦 / 3)) ∈ ℂ)
252222, 250, 251sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑦 / 3) ∈ ℝ+ → (2 · (𝑦 / 3)) ∈ ℂ)
25313, 252syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 ∈ ℝ+ → (2 · (𝑦 / 3)) ∈ ℂ)
254253negcld 10838 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 ∈ ℝ+ → -(2 · (𝑦 / 3)) ∈ ℂ)
255254ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → -(2 · (𝑦 / 3)) ∈ ℂ)
25684, 255pncand 10852 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((𝐹𝑧) + -(2 · (𝑦 / 3))) − -(2 · (𝑦 / 3))) = (𝐹𝑧))
257249, 256eqtrd 2833 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((((𝐹𝑧) / (𝑦 / 3)) − (1 + 1)) · (𝑦 / 3)) − ((𝑦 / 3) − 𝑦)) = (𝐹𝑧))
25863recnd 10522 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (⌊‘((𝐹𝑧) / (𝑦 / 3))) ∈ ℂ)
259 peano2cn 10665 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((⌊‘((𝐹𝑧) / (𝑦 / 3))) ∈ ℂ → ((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) ∈ ℂ)
260 subsub4 10773 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − 1) − 1) = (((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − (1 + 1)))
26172, 72, 260mp3an23 1445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) ∈ ℂ → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − 1) − 1) = (((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − (1 + 1)))
262258, 259, 2613syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − 1) − 1) = (((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − (1 + 1)))
263 pncan 10745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((⌊‘((𝐹𝑧) / (𝑦 / 3))) ∈ ℂ ∧ 1 ∈ ℂ) → (((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − 1) = (⌊‘((𝐹𝑧) / (𝑦 / 3))))
264258, 72, 263sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − 1) = (⌊‘((𝐹𝑧) / (𝑦 / 3))))
265264oveq1d 7038 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − 1) − 1) = ((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1))
266262, 265eqtr3d 2835 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − (1 + 1)) = ((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1))
267266oveq1d 7038 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − (1 + 1)) · (𝑦 / 3)) = (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)))
268267oveq1d 7038 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − (1 + 1)) · (𝑦 / 3)) − ((𝑦 / 3) − 𝑦)) = ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − ((𝑦 / 3) − 𝑦)))
269190recnd 10522 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → 𝑦 ∈ ℂ)
270185, 76, 269subsubd 10879 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − ((𝑦 / 3) − 𝑦)) = (((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3)) + 𝑦))
271268, 270eqtrd 2833 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((((⌊‘((𝐹𝑧) / (𝑦 / 3))) + 1) − (1 + 1)) · (𝑦 / 3)) − ((𝑦 / 3) − 𝑦)) = (((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3)) + 𝑦))
272211, 257, 2713brtr3d 4999 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (𝐹𝑧) ≤ (((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3)) + 𝑦))
27351, 191, 192, 272leadd1dd 11108 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝐹𝑧) + (𝐺𝑧)) ≤ ((((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3)) + 𝑦) + (𝐺𝑧)))
274192recnd 10522 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (𝐺𝑧) ∈ ℂ)
275188recnd 10522 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3)) ∈ ℂ)
276230ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → 𝑦 ∈ ℂ)
277274, 275, 276addassd 10516 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((𝐺𝑧) + ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) + 𝑦) = ((𝐺𝑧) + (((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3)) + 𝑦)))
278275, 276addcld 10513 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3)) + 𝑦) ∈ ℂ)
279274, 278addcomd 10695 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝐺𝑧) + (((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3)) + 𝑦)) = ((((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3)) + 𝑦) + (𝐺𝑧)))
280277, 279eqtrd 2833 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((𝐺𝑧) + ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) + 𝑦) = ((((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3)) + 𝑦) + (𝐺𝑧)))
281273, 280breqtrrd 4996 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝐹𝑧) + (𝐺𝑧)) ≤ (((𝐺𝑧) + ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) + 𝑦))
28297, 190readdcld 10523 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝑧) + 𝑦) ∈ ℝ)
28351, 192readdcld 10523 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝐹𝑧) + (𝐺𝑧)) ∈ ℝ)
284192, 188readdcld 10523 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝐺𝑧) + ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) ∈ ℝ)
285284, 190readdcld 10523 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((𝐺𝑧) + ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) + 𝑦) ∈ ℝ)
286 letr 10587 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑧) + 𝑦) ∈ ℝ ∧ ((𝐹𝑧) + (𝐺𝑧)) ∈ ℝ ∧ (((𝐺𝑧) + ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) + 𝑦) ∈ ℝ) → ((((𝑧) + 𝑦) ≤ ((𝐹𝑧) + (𝐺𝑧)) ∧ ((𝐹𝑧) + (𝐺𝑧)) ≤ (((𝐺𝑧) + ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) + 𝑦)) → ((𝑧) + 𝑦) ≤ (((𝐺𝑧) + ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) + 𝑦)))
287282, 283, 285, 286syl3anc 1364 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((((𝑧) + 𝑦) ≤ ((𝐹𝑧) + (𝐺𝑧)) ∧ ((𝐹𝑧) + (𝐺𝑧)) ≤ (((𝐺𝑧) + ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) + 𝑦)) → ((𝑧) + 𝑦) ≤ (((𝐺𝑧) + ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) + 𝑦)))
288281, 287mpan2d 690 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((𝑧) + 𝑦) ≤ ((𝐹𝑧) + (𝐺𝑧)) → ((𝑧) + 𝑦) ≤ (((𝐺𝑧) + ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) + 𝑦)))
289288imp 407 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ((𝑧) + 𝑦) ≤ ((𝐹𝑧) + (𝐺𝑧))) → ((𝑧) + 𝑦) ≤ (((𝐺𝑧) + ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) + 𝑦))
29097, 188, 192lesubaddd 11091 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((𝑧) − ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) ≤ (𝐺𝑧) ↔ (𝑧) ≤ ((𝐺𝑧) + ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3)))))
29197, 284, 190leadd1d 11088 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝑧) ≤ ((𝐺𝑧) + ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) ↔ ((𝑧) + 𝑦) ≤ (((𝐺𝑧) + ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) + 𝑦)))
292290, 291bitrd 280 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((𝑧) − ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) ≤ (𝐺𝑧) ↔ ((𝑧) + 𝑦) ≤ (((𝐺𝑧) + ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) + 𝑦)))
293292adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ((𝑧) + 𝑦) ≤ ((𝐹𝑧) + (𝐺𝑧))) → (((𝑧) − ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) ≤ (𝐺𝑧) ↔ ((𝑧) + 𝑦) ≤ (((𝐺𝑧) + ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) + 𝑦)))
294289, 293mpbird 258 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ((𝑧) + 𝑦) ≤ ((𝐹𝑧) + (𝐺𝑧))) → ((𝑧) − ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) − (𝑦 / 3))) ≤ (𝐺𝑧))
295187, 294eqbrtrrd 4992 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ((𝑧) + 𝑦) ≤ ((𝐹𝑧) + (𝐺𝑧))) → (((𝑧) − (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3))) + (𝑦 / 3)) ≤ (𝐺𝑧))
296295ex 413 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((𝑧) + 𝑦) ≤ ((𝐹𝑧) + (𝐺𝑧)) → (((𝑧) − (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3))) + (𝑦 / 3)) ≤ (𝐺𝑧)))
297296adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ¬ ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0) → (((𝑧) + 𝑦) ≤ ((𝐹𝑧) + (𝐺𝑧)) → (((𝑧) − (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3))) + (𝑦 / 3)) ≤ (𝐺𝑧)))
298183, 297sylbid 241 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ¬ ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0) → (if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧)) → (((𝑧) − (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3))) + (𝑦 / 3)) ≤ (𝐺𝑧)))
299298imp 407 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ¬ ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0) ∧ if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧))) → (((𝑧) − (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3))) + (𝑦 / 3)) ≤ (𝐺𝑧))
300299an32s 648 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧))) ∧ ¬ ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0) → (((𝑧) − (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3))) + (𝑦 / 3)) ≤ (𝐺𝑧))
301300adantr 481 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧))) ∧ ¬ ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0) ∧ ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0)) → (((𝑧) − (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3))) + (𝑦 / 3)) ≤ (𝐺𝑧))
302173oveq2d 7039 . . . . . . . . . . . . . . . . . . . 20 (¬ ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0) → ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = ((𝑧) − (𝑧)))
303184subidd 10839 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝑧) − (𝑧)) = 0)
304303adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧))) → ((𝑧) − (𝑧)) = 0)
305302, 304sylan9eqr 2855 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧))) ∧ ¬ ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0)) → ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0)
306305pm2.24d 154 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧))) ∧ ¬ ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0)) → (¬ ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0 → (((𝑧) − (𝑧)) + (𝑦 / 3)) ≤ (𝐺𝑧)))
307306imp 407 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧))) ∧ ¬ ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0)) ∧ ¬ ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0) → (((𝑧) − (𝑧)) + (𝑦 / 3)) ≤ (𝐺𝑧))
308307an32s 648 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧))) ∧ ¬ ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0) ∧ ¬ ((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0)) → (((𝑧) − (𝑧)) + (𝑦 / 3)) ≤ (𝐺𝑧))
309166, 169, 301, 308ifbothda 4424 . . . . . . . . . . . . . . 15 ((((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧))) ∧ ¬ ((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0) → (((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) + (𝑦 / 3)) ≤ (𝐺𝑧))
310155, 156, 163, 309ifbothda 4424 . . . . . . . . . . . . . 14 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧))) → if(((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) = 0, 0, (((𝑧) − if(((((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑧) ∧ (𝑧) ≠ 0), (((⌊‘((𝐹𝑧) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑧))) + (𝑦 / 3))) ≤ (𝐺𝑧))
311154, 310eqbrtrd 4990 . . . . . . . . . . . . 13 (((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧))) → if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3))) ≤ (𝐺𝑧))
312311ex 413 . . . . . . . . . . . 12 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧)) → if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3))) ≤ (𝐺𝑧)))
313312ralimdva 3146 . . . . . . . . . . 11 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → (∀𝑧 ∈ ℝ if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧)) → ∀𝑧 ∈ ℝ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3))) ≤ (𝐺𝑧)))
314121a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ∈ V)
315 ovex 7055 . . . . . . . . . . . . . . 15 ((𝑧) + 𝑦) ∈ V
316123, 315ifex 4435 . . . . . . . . . . . . . 14 if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ∈ V
317316a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ℝ) → if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ∈ V)
3182ffvelrnda 6723 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ℝ) → (𝐹𝑧) ∈ (0[,)+∞))
31950, 318sseldi 3893 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ℝ) → (𝐹𝑧) ∈ ℝ)
320157ffvelrnda 6723 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ℝ) → (𝐺𝑧) ∈ (0[,)+∞))
32150, 320sseldi 3893 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ℝ) → (𝐺𝑧) ∈ ℝ)
322319, 321readdcld 10523 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ℝ) → ((𝐹𝑧) + (𝐺𝑧)) ∈ ℝ)
323 eqidd 2798 . . . . . . . . . . . . 13 (𝜑 → (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) = (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))))
324157feqmptd 6608 . . . . . . . . . . . . . 14 (𝜑𝐺 = (𝑧 ∈ ℝ ↦ (𝐺𝑧)))
325314, 318, 320, 128, 324offval2 7291 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑓 + 𝐺) = (𝑧 ∈ ℝ ↦ ((𝐹𝑧) + (𝐺𝑧))))
326314, 317, 322, 323, 325ofrfval2 7292 . . . . . . . . . . . 12 (𝜑 → ((𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺) ↔ ∀𝑧 ∈ ℝ if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧))))
327326ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → ((𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺) ↔ ∀𝑧 ∈ ℝ if((𝑧) = 0, 0, ((𝑧) + 𝑦)) ≤ ((𝐹𝑧) + (𝐺𝑧))))
328 ovex 7055 . . . . . . . . . . . . . . 15 (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3)) ∈ V
329123, 328ifex 4435 . . . . . . . . . . . . . 14 if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3))) ∈ V
330329a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ℝ) → if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3))) ∈ V)
331 eqidd 2798 . . . . . . . . . . . . 13 (𝜑 → (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3)))) = (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3)))))
332314, 330, 320, 331, 324ofrfval2 7292 . . . . . . . . . . . 12 (𝜑 → ((𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3)))) ∘𝑟𝐺 ↔ ∀𝑧 ∈ ℝ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3))) ≤ (𝐺𝑧)))
333332ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → ((𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3)))) ∘𝑟𝐺 ↔ ∀𝑧 ∈ ℝ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3))) ≤ (𝐺𝑧)))
334313, 327, 3333imtr4d 295 . . . . . . . . . 10 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → ((𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺) → (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3)))) ∘𝑟𝐺))
335334impr 455 . . . . . . . . 9 (((𝜑 ∈ dom ∫1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺))) → (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3)))) ∘𝑟𝐺)
336 oveq2 7031 . . . . . . . . . . . . 13 (𝑑 = (𝑦 / 3) → (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑) = (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3)))
337336ifeq2d 4406 . . . . . . . . . . . 12 (𝑑 = (𝑦 / 3) → if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑)) = if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3))))
338337mpteq2dv 5063 . . . . . . . . . . 11 (𝑑 = (𝑦 / 3) → (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) = (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3)))))
339338breq1d 4978 . . . . . . . . . 10 (𝑑 = (𝑦 / 3) → ((𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺 ↔ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3)))) ∘𝑟𝐺))
340339rspcev 3561 . . . . . . . . 9 (((𝑦 / 3) ∈ ℝ+ ∧ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + (𝑦 / 3)))) ∘𝑟𝐺) → ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺)
341139, 335, 340syl2anc 584 . . . . . . . 8 (((𝜑 ∈ dom ∫1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺))) → ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺)
34235ffvelrnda 6723 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,)+∞))
34350, 342sseldi 3893 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
34413ad2antlr 723 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝑦 / 3) ∈ ℝ+)
345343, 344rerpdivcld 12316 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) / (𝑦 / 3)) ∈ ℝ)
346 reflcl 13020 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑥) / (𝑦 / 3)) ∈ ℝ → (⌊‘((𝐹𝑥) / (𝑦 / 3))) ∈ ℝ)
347 peano2rem 10807 . . . . . . . . . . . . . . . . . 18 ((⌊‘((𝐹𝑥) / (𝑦 / 3))) ∈ ℝ → ((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) ∈ ℝ)
348345, 346, 3473syl 18 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) ∈ ℝ)
34957ad2antlr 723 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝑦 / 3) ∈ ℝ)
350348, 349remulcld 10524 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ∈ ℝ)
35196ffvelrnda 6723 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝑥) ∈ ℝ)
352350, 351ifcld 4432 . . . . . . . . . . . . . . 15 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)) ∈ ℝ)
353352recnd 10522 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)) ∈ ℂ)
354351recnd 10522 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝑥) ∈ ℂ)
355353, 354pncan3d 10854 . . . . . . . . . . . . 13 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)) + ((𝑥) − if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) = (𝑥))
356355mpteq2dva 5062 . . . . . . . . . . . 12 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ (if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)) + ((𝑥) − if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) = (𝑥 ∈ ℝ ↦ (𝑥)))
357351, 352resubcld 10922 . . . . . . . . . . . . 13 ((((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((𝑥) − if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) ∈ ℝ)
358 eqidd 2798 . . . . . . . . . . . . 13 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) = (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))
35995feqmptd 6608 . . . . . . . . . . . . . . 15 ( ∈ dom ∫1 = (𝑥 ∈ ℝ ↦ (𝑥)))
360359ad2antlr 723 . . . . . . . . . . . . . 14 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → = (𝑥 ∈ ℝ ↦ (𝑥)))
361122, 351, 352, 360, 358offval2 7291 . . . . . . . . . . . . 13 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) = (𝑥 ∈ ℝ ↦ ((𝑥) − if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))))
362122, 352, 357, 358, 361offval2 7291 . . . . . . . . . . . 12 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) ∘𝑓 + (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) = (𝑥 ∈ ℝ ↦ (if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)) + ((𝑥) − if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))))
363356, 362, 3603eqtr4d 2843 . . . . . . . . . . 11 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) ∘𝑓 + (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) = )
364363fveq2d 6549 . . . . . . . . . 10 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → (∫1‘((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) ∘𝑓 + (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))))) = (∫1))
3653, 7itg1add 23989 . . . . . . . . . 10 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → (∫1‘((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) ∘𝑓 + (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))))) = ((∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) + (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))))))
366364, 365eqtr3d 2835 . . . . . . . . 9 (((𝜑 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ+) → (∫1) = ((∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) + (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))))))
367366adantrr 713 . . . . . . . 8 (((𝜑 ∈ dom ∫1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺))) → (∫1) = ((∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) + (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))))))
368 fvex 6558 . . . . . . . . 9 (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) ∈ V
369 fvex 6558 . . . . . . . . 9 (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) ∈ V
370 iba 528 . . . . . . . . . . . 12 (𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) → (∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹 ↔ (∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))))))
371 iba 528 . . . . . . . . . . . 12 (𝑢 = (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) → (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺 ↔ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))))))
372370, 371bi2anan9 635 . . . . . . . . . . 11 ((𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) ∧ 𝑢 = (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))))) → ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹 ∧ ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺) ↔ ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))))))))
373372bicomd 224 . . . . . . . . . 10 ((𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) ∧ 𝑢 = (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))))) → (((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))))) ↔ (∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹 ∧ ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺)))
374 oveq12 7032 . . . . . . . . . . 11 ((𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) ∧ 𝑢 = (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))))) → (𝑡 + 𝑢) = ((∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) + (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))))))
375374eqeq2d 2807 . . . . . . . . . 10 ((𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) ∧ 𝑢 = (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))))) → ((∫1) = (𝑡 + 𝑢) ↔ (∫1) = ((∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) + (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))))))
376373, 375anbi12d 630 . . . . . . . . 9 ((𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) ∧ 𝑢 = (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))))) → ((((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))))) ∧ (∫1) = (𝑡 + 𝑢)) ↔ ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹 ∧ ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺) ∧ (∫1) = ((∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) + (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))))))))
377368, 369, 376spc2ev 3552 . . . . . . . 8 (((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹 ∧ ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺) ∧ (∫1) = ((∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) + (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))))) → ∃𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))))) ∧ (∫1) = (𝑡 + 𝑢)))
378138, 341, 367, 377syl21anc 834 . . . . . . 7 (((𝜑 ∈ dom ∫1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺))) → ∃𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))))) ∧ (∫1) = (𝑡 + 𝑢)))
379 fveq1 6544 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) → (𝑓𝑧) = ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧))
380379eqeq1d 2799 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) → ((𝑓𝑧) = 0 ↔ ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0))
381379oveq1d 7038 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) → ((𝑓𝑧) + 𝑐) = (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))
382380, 381ifbieq2d 4412 . . . . . . . . . . . . . . 15 (𝑓 = (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) → if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) = if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐)))
383382mpteq2dv 5063 . . . . . . . . . . . . . 14 (𝑓 = (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) → (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) = (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))))
384383breq1d 4978 . . . . . . . . . . . . 13 (𝑓 = (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) → ((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹 ↔ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹))
385384rexbidv 3262 . . . . . . . . . . . 12 (𝑓 = (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) → (∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹 ↔ ∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹))
386 fveq2 6545 . . . . . . . . . . . . 13 (𝑓 = (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) → (∫1𝑓) = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))))
387386eqeq2d 2807 . . . . . . . . . . . 12 (𝑓 = (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) → (𝑡 = (∫1𝑓) ↔ 𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))))
388385, 387anbi12d 630 . . . . . . . . . . 11 (𝑓 = (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) → ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ↔ (∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))))))
389388anbi1d 629 . . . . . . . . . 10 (𝑓 = (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) → (((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ↔ ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔)))))
390389anbi1d 629 . . . . . . . . 9 (𝑓 = (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) → ((((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ (∫1) = (𝑡 + 𝑢)) ↔ (((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ (∫1) = (𝑡 + 𝑢))))
3913902exbidv 1906 . . . . . . . 8 (𝑓 = (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) → (∃𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ (∫1) = (𝑡 + 𝑢)) ↔ ∃𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ (∫1) = (𝑡 + 𝑢))))
392 fveq1 6544 . . . . . . . . . . . . . . . . 17 (𝑔 = (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) → (𝑔𝑧) = ((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧))
393392eqeq1d 2799 . . . . . . . . . . . . . . . 16 (𝑔 = (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) → ((𝑔𝑧) = 0 ↔ ((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0))
394392oveq1d 7038 . . . . . . . . . . . . . . . 16 (𝑔 = (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) → ((𝑔𝑧) + 𝑑) = (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))
395393, 394ifbieq2d 4412 . . . . . . . . . . . . . . 15 (𝑔 = (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) → if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) = if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑)))
396395mpteq2dv 5063 . . . . . . . . . . . . . 14 (𝑔 = (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) → (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) = (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))))
397396breq1d 4978 . . . . . . . . . . . . 13 (𝑔 = (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) → ((𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺 ↔ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺))
398397rexbidv 3262 . . . . . . . . . . . 12 (𝑔 = (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) → (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺 ↔ ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺))
399 fveq2 6545 . . . . . . . . . . . . 13 (𝑔 = (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) → (∫1𝑔) = (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))))
400399eqeq2d 2807 . . . . . . . . . . . 12 (𝑔 = (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) → (𝑢 = (∫1𝑔) ↔ 𝑢 = (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))))))
401398, 400anbi12d 630 . . . . . . . . . . 11 (𝑔 = (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) → ((∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔)) ↔ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))))))
402401anbi2d 628 . . . . . . . . . 10 (𝑔 = (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) → (((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ↔ ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))))))))
403402anbi1d 629 . . . . . . . . 9 (𝑔 = (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) → ((((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ (∫1) = (𝑡 + 𝑢)) ↔ (((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))))) ∧ (∫1) = (𝑡 + 𝑢))))
4044032exbidv 1906 . . . . . . . 8 (𝑔 = (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) → (∃𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ (∫1) = (𝑡 + 𝑢)) ↔ ∃𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))))) ∧ (∫1) = (𝑡 + 𝑢))))
405391, 404rspc2ev 3576 . . . . . . 7 (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))) ∈ dom ∫1 ∧ (𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))) ∈ dom ∫1 ∧ ∃𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) = 0, 0, (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥)))‘𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1‘(𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) = 0, 0, (((𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))‘𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1‘(𝑓 − (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑦 / 3))) − 1) · (𝑦 / 3)), (𝑥))))))) ∧ (∫1) = (𝑡 + 𝑢))) → ∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ (∫1) = (𝑡 + 𝑢)))
4064, 8, 378, 405syl3anc 1364 . . . . . 6 (((𝜑 ∈ dom ∫1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺))) → ∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ (∫1) = (𝑡 + 𝑢)))
407 eqeq1 2801 . . . . . . . . 9 (𝑠 = (∫1) → (𝑠 = (𝑡 + 𝑢) ↔ (∫1) = (𝑡 + 𝑢)))
408407anbi2d 628 . . . . . . . 8 (𝑠 = (∫1) → ((((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ (((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ (∫1) = (𝑡 + 𝑢))))
4094082exbidv 1906 . . . . . . 7 (𝑠 = (∫1) → (∃𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ ∃𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ (∫1) = (𝑡 + 𝑢))))
4104092rexbidv 3265 . . . . . 6 (𝑠 = (∫1) → (∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ ∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ (∫1) = (𝑡 + 𝑢))))
411406, 410syl5ibrcom 248 . . . . 5 (((𝜑 ∈ dom ∫1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺))) → (𝑠 = (∫1) → ∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢))))
412411rexlimdvaa 3250 . . . 4 ((𝜑 ∈ dom ∫1) → (∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺) → (𝑠 = (∫1) → ∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))))
413412impd 411 . . 3 ((𝜑 ∈ dom ∫1) → ((∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺) ∧ 𝑠 = (∫1)) → ∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢))))
414413rexlimdva 3249 . 2 (𝜑 → (∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺) ∧ 𝑠 = (∫1)) → ∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢))))
415 rexcom4 3215 . . . . 5 (∃𝑔 ∈ dom ∫1𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ ∃𝑡𝑔 ∈ dom ∫1𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
416415rexbii 3213 . . . 4 (∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ ∃𝑓 ∈ dom ∫1𝑡𝑔 ∈ dom ∫1𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
417 rexcom4 3215 . . . 4 (∃𝑓 ∈ dom ∫1𝑡𝑔 ∈ dom ∫1𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ ∃𝑡𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
418416, 417bitri 276 . . 3 (∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ ∃𝑡𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
419 rexcom4 3215 . . . . . 6 (∃𝑔 ∈ dom ∫1𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ ∃𝑢𝑔 ∈ dom ∫1(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
420419rexbii 3213 . . . . 5 (∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ ∃𝑓 ∈ dom ∫1𝑢𝑔 ∈ dom ∫1(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
421 rexcom4 3215 . . . . 5 (∃𝑓 ∈ dom ∫1𝑢𝑔 ∈ dom ∫1(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ ∃𝑢𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
422420, 421bitri 276 . . . 4 (∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ ∃𝑢𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
423422exbii 1833 . . 3 (∃𝑡𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ ∃𝑡𝑢𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
424 r19.41vv 3312 . . . 4 (∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ (∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
4254242exbii 1834 . . 3 (∃𝑡𝑢𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ ∃𝑡𝑢(∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
426418, 423, 4253bitrri 299 . 2 (∃𝑡𝑢(∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ ∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1𝑡𝑢(((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
427414, 426syl6ibr 253 1 (𝜑 → (∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺) ∧ 𝑠 = (∫1)) → ∃𝑡𝑢(∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 842   = wceq 1525  wex 1765  wcel 2083  wne 2986  wral 3107  wrex 3108  Vcvv 3440  ifcif 4387   class class class wbr 4968  cmpt 5047  dom cdm 5450   Fn wfn 6227  wf 6228  cfv 6232  (class class class)co 7023  𝑓 cof 7272  𝑟 cofr 7273  cc 10388  cr 10389  0cc0 10390  1c1 10391   + caddc 10393   · cmul 10395  +∞cpnf 10525   < clt 10528  cle 10529  cmin 10723  -cneg 10724   / cdiv 11151  cn 11492  2c2 11546  3c3 11547  +crp 12243  [,)cico 12594  cfl 13014  MblFncmbf 23902  1citg1 23903  2citg2 23904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-inf2 8957  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467  ax-pre-sup 10468  ax-addf 10469
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-fal 1538  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-disj 4937  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-se 5410  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-isom 6241  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-of 7274  df-ofr 7275  df-om 7444  df-1st 7552  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-2o 7961  df-oadd 7964  df-er 8146  df-map 8265  df-pm 8266  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-fi 8728  df-sup 8759  df-inf 8760  df-oi 8827  df-dju 9183  df-card 9221  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-nn 11493  df-2 11554  df-3 11555  df-n0 11752  df-z 11836  df-uz 12098  df-q 12202  df-rp 12244  df-xneg 12361  df-xadd 12362  df-xmul 12363  df-ioo 12596  df-ico 12598  df-icc 12599  df-fz 12747  df-fzo 12888  df-fl 13016  df-seq 13224  df-exp 13284  df-hash 13545  df-cj 14296  df-re 14297  df-im 14298  df-sqrt 14432  df-abs 14433  df-clim 14683  df-sum 14881  df-rest 16529  df-topgen 16550  df-psmet 20223  df-xmet 20224  df-met 20225  df-bl 20226  df-mopn 20227  df-top 21190  df-topon 21207  df-bases 21242  df-cmp 21683  df-ovol 23752  df-vol 23753  df-mbf 23907  df-itg1 23908
This theorem is referenced by:  itg2addnc  34498
  Copyright terms: Public domain W3C validator