Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bitr2di | Structured version Visualization version GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr2di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr2di.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
bitr2di | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2di.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bitr2di.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
3 | 1, 2 | bitrdi 287 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
4 | 3 | bicomd 222 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bitr4id 290 bibif 372 oranabs 997 necon4bid 2989 2reu4lem 4456 resopab2 5944 xpco 6192 funconstss 6933 xpopth 7872 snmapen 8828 ac6sfi 9058 supgtoreq 9229 rankr1bg 9561 alephsdom 9842 brdom7disj 10287 fpwwe2lem12 10398 nn0sub 12283 elznn0 12334 nn01to3 12681 supxrbnd1 13055 supxrbnd2 13056 rexuz3 15060 smueqlem 16197 qnumdenbi 16448 dfiso3 17485 tltnle 18140 lssne0 20212 pjfval2 20916 0top 22133 1stccn 22614 dscopn 23729 bcthlem1 24488 ovolgelb 24644 iblpos 24957 itgposval 24960 itgsubstlem 25212 sincosq3sgn 25657 sincosq4sgn 25658 lgsquadlem3 26530 colinearalg 27278 elntg2 27353 wlklnwwlkln2lem 28247 2pthdlem1 28295 wwlks2onsym 28323 rusgrnumwwlkb0 28336 numclwwlk2lem1 28740 nmoo0 29153 leop3 30487 leoptri 30498 f1od2 31056 fedgmullem2 31711 xpord2pred 33792 dfrdg4 34253 curf 35755 poimirlem28 35805 itgaddnclem2 35836 lfl1dim 37135 glbconxN 37392 2dim 37484 elpadd0 37823 dalawlem13 37897 diclspsn 39208 dihglb2 39356 dochsordN 39388 lzunuz 40590 uneqsn 41633 ntrclskb 41679 ntrneiel2 41696 infxrbnd2 42908 funressnfv 44537 funressndmafv2rn 44715 iccpartiltu 44874 |
Copyright terms: Public domain | W3C validator |