| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bitr2di | Structured version Visualization version GIF version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr2di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bitr2di.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| bitr2di | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2di.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bitr2di.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 3 | 1, 2 | bitrdi 287 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 4 | 3 | bicomd 223 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bitr4id 290 bibif 371 oranabs 1001 necon4bid 2974 2reu4lem 4471 resopab2 5989 xpco 6241 funconstss 6995 xpopth 7968 xpord2pred 8081 snmapen 8967 ac6sfi 9175 supgtoreq 9362 rankr1bg 9703 alephsdom 9984 brdom7disj 10429 fpwwe2lem12 10540 nn0sub 12438 elznn0 12490 nn01to3 12841 supxrbnd1 13222 supxrbnd2 13223 rexuz3 15258 smueqlem 16403 qnumdenbi 16657 dfiso3 17682 tltnle 18328 lssne0 20886 pjfval2 21648 0top 22899 1stccn 23379 dscopn 24489 bcthlem1 25252 ovolgelb 25409 iblpos 25722 itgposval 25725 itgsubstlem 25983 sincosq3sgn 26437 sincosq4sgn 26438 lgsquadlem3 27321 elzs2 28324 colinearalg 28890 elntg2 28965 wlklnwwlkln2lem 29862 2pthdlem1 29910 wwlks2onsym 29940 rusgrnumwwlkb0 29954 numclwwlk2lem1 30358 nmoo0 30773 leop3 32107 leoptri 32118 f1od2 32706 fedgmullem2 33664 r1ssel 35139 vonf1owev 35173 dfrdg4 36016 curf 37658 poimirlem28 37708 itgaddnclem2 37739 relssinxpdmrn 38401 lfl1dim 39240 glbconxN 39497 2dim 39589 elpadd0 39928 dalawlem13 40002 diclspsn 41313 dihglb2 41461 dochsordN 41493 redvmptabs 42478 lzunuz 42885 tfsconcat0b 43463 uneqsn 44142 ntrclskb 44186 ntrneiel2 44203 infxrbnd2 45491 funressnfv 47167 funressndmafv2rn 47347 iccpartiltu 47546 |
| Copyright terms: Public domain | W3C validator |