| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bitr2di | Structured version Visualization version GIF version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr2di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bitr2di.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| bitr2di | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2di.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bitr2di.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 3 | 1, 2 | bitrdi 287 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 4 | 3 | bicomd 223 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bitr4id 290 bibif 371 oranabs 1001 necon4bid 2970 2reu4lem 4475 resopab2 5991 xpco 6241 funconstss 6994 xpopth 7972 xpord2pred 8085 snmapen 8970 ac6sfi 9189 supgtoreq 9380 rankr1bg 9718 alephsdom 9999 brdom7disj 10444 fpwwe2lem12 10555 nn0sub 12452 elznn0 12504 nn01to3 12860 supxrbnd1 13241 supxrbnd2 13242 rexuz3 15274 smueqlem 16419 qnumdenbi 16673 dfiso3 17698 tltnle 18344 lssne0 20872 pjfval2 21634 0top 22886 1stccn 23366 dscopn 24477 bcthlem1 25240 ovolgelb 25397 iblpos 25710 itgposval 25713 itgsubstlem 25971 sincosq3sgn 26425 sincosq4sgn 26426 lgsquadlem3 27309 elzs2 28310 colinearalg 28873 elntg2 28948 wlklnwwlkln2lem 29845 2pthdlem1 29893 wwlks2onsym 29921 rusgrnumwwlkb0 29934 numclwwlk2lem1 30338 nmoo0 30753 leop3 32087 leoptri 32098 f1od2 32677 fedgmullem2 33602 vonf1owev 35080 dfrdg4 35924 curf 37577 poimirlem28 37627 itgaddnclem2 37658 relssinxpdmrn 38316 lfl1dim 39099 glbconxN 39357 2dim 39449 elpadd0 39788 dalawlem13 39862 diclspsn 41173 dihglb2 41321 dochsordN 41353 redvmptabs 42333 lzunuz 42741 tfsconcat0b 43319 uneqsn 43998 ntrclskb 44042 ntrneiel2 44059 infxrbnd2 45349 funressnfv 47028 funressndmafv2rn 47208 iccpartiltu 47407 |
| Copyright terms: Public domain | W3C validator |