Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bitr2di | Structured version Visualization version GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr2di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr2di.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
bitr2di | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2di.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bitr2di.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
3 | 1, 2 | bitrdi 290 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
4 | 3 | bicomd 226 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 |
This theorem is referenced by: bitr4id 293 bibif 375 oranabs 999 necon4bid 2979 2reu4lem 4412 resopab2 5878 xpco 6121 funconstss 6833 xpopth 7755 snmapen 8637 ac6sfi 8836 supgtoreq 9007 rankr1bg 9305 alephsdom 9586 brdom7disj 10031 fpwwe2lem12 10142 nn0sub 12026 elznn0 12077 nn01to3 12423 supxrbnd1 12797 supxrbnd2 12798 rexuz3 14798 smueqlem 15933 qnumdenbi 16184 dfiso3 17148 lssne0 19841 pjfval2 20525 0top 21734 1stccn 22214 dscopn 23326 bcthlem1 24076 ovolgelb 24232 iblpos 24545 itgposval 24548 itgsubstlem 24800 sincosq3sgn 25245 sincosq4sgn 25246 lgsquadlem3 26118 colinearalg 26856 elntg2 26931 wlklnwwlkln2lem 27820 2pthdlem1 27868 wwlks2onsym 27896 rusgrnumwwlkb0 27909 numclwwlk2lem1 28313 nmoo0 28726 leop3 30060 leoptri 30071 f1od2 30631 tltnle 30822 fedgmullem2 31283 xpord2pred 33403 dfrdg4 33891 curf 35378 poimirlem28 35428 itgaddnclem2 35459 lfl1dim 36758 glbconxN 37015 2dim 37107 elpadd0 37446 dalawlem13 37520 diclspsn 38831 dihglb2 38979 dochsordN 39011 lzunuz 40162 uneqsn 41179 ntrclskb 41225 ntrneiel2 41242 infxrbnd2 42446 funressnfv 44076 funressndmafv2rn 44248 iccpartiltu 44408 |
Copyright terms: Public domain | W3C validator |