| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bitr2di | Structured version Visualization version GIF version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr2di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bitr2di.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| bitr2di | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2di.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bitr2di.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 3 | 1, 2 | bitrdi 287 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 4 | 3 | bicomd 223 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bitr4id 290 bibif 371 oranabs 1001 necon4bid 2973 2reu4lem 4472 resopab2 5985 xpco 6236 funconstss 6989 xpopth 7962 xpord2pred 8075 snmapen 8960 ac6sfi 9168 supgtoreq 9355 rankr1bg 9693 alephsdom 9974 brdom7disj 10419 fpwwe2lem12 10530 nn0sub 12428 elznn0 12480 nn01to3 12836 supxrbnd1 13217 supxrbnd2 13218 rexuz3 15253 smueqlem 16398 qnumdenbi 16652 dfiso3 17677 tltnle 18323 lssne0 20882 pjfval2 21644 0top 22896 1stccn 23376 dscopn 24486 bcthlem1 25249 ovolgelb 25406 iblpos 25719 itgposval 25722 itgsubstlem 25980 sincosq3sgn 26434 sincosq4sgn 26435 lgsquadlem3 27318 elzs2 28321 colinearalg 28886 elntg2 28961 wlklnwwlkln2lem 29858 2pthdlem1 29906 wwlks2onsym 29934 rusgrnumwwlkb0 29947 numclwwlk2lem1 30351 nmoo0 30766 leop3 32100 leoptri 32111 f1od2 32697 fedgmullem2 33638 r1ssel 35109 vonf1owev 35140 dfrdg4 35984 curf 37637 poimirlem28 37687 itgaddnclem2 37718 relssinxpdmrn 38376 lfl1dim 39159 glbconxN 39416 2dim 39508 elpadd0 39847 dalawlem13 39921 diclspsn 41232 dihglb2 41380 dochsordN 41412 redvmptabs 42392 lzunuz 42800 tfsconcat0b 43378 uneqsn 44057 ntrclskb 44101 ntrneiel2 44118 infxrbnd2 45406 funressnfv 47073 funressndmafv2rn 47253 iccpartiltu 47452 |
| Copyright terms: Public domain | W3C validator |