| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bitr2di | Structured version Visualization version GIF version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr2di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bitr2di.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| bitr2di | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2di.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bitr2di.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 3 | 1, 2 | bitrdi 287 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 4 | 3 | bicomd 223 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bitr4id 290 bibif 371 oranabs 1001 necon4bid 2971 2reu4lem 4488 resopab2 6010 xpco 6265 funconstss 7031 xpopth 8012 xpord2pred 8127 snmapen 9012 ac6sfi 9238 supgtoreq 9429 rankr1bg 9763 alephsdom 10046 brdom7disj 10491 fpwwe2lem12 10602 nn0sub 12499 elznn0 12551 nn01to3 12907 supxrbnd1 13288 supxrbnd2 13289 rexuz3 15322 smueqlem 16467 qnumdenbi 16721 dfiso3 17742 tltnle 18388 lssne0 20864 pjfval2 21625 0top 22877 1stccn 23357 dscopn 24468 bcthlem1 25231 ovolgelb 25388 iblpos 25701 itgposval 25704 itgsubstlem 25962 sincosq3sgn 26416 sincosq4sgn 26417 lgsquadlem3 27300 elzs2 28294 colinearalg 28844 elntg2 28919 wlklnwwlkln2lem 29819 2pthdlem1 29867 wwlks2onsym 29895 rusgrnumwwlkb0 29908 numclwwlk2lem1 30312 nmoo0 30727 leop3 32061 leoptri 32072 f1od2 32651 fedgmullem2 33633 vonf1owev 35102 dfrdg4 35946 curf 37599 poimirlem28 37649 itgaddnclem2 37680 relssinxpdmrn 38338 lfl1dim 39121 glbconxN 39379 2dim 39471 elpadd0 39810 dalawlem13 39884 diclspsn 41195 dihglb2 41343 dochsordN 41375 redvmptabs 42355 lzunuz 42763 tfsconcat0b 43342 uneqsn 44021 ntrclskb 44065 ntrneiel2 44082 infxrbnd2 45372 funressnfv 47048 funressndmafv2rn 47228 iccpartiltu 47427 |
| Copyright terms: Public domain | W3C validator |