Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bitr2di | Structured version Visualization version GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr2di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr2di.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
bitr2di | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2di.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bitr2di.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
3 | 1, 2 | bitrdi 286 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
4 | 3 | bicomd 222 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bitr4id 289 bibif 371 oranabs 996 necon4bid 2988 2reu4lem 4453 resopab2 5933 xpco 6181 funconstss 6915 xpopth 7845 snmapen 8782 ac6sfi 8988 supgtoreq 9159 rankr1bg 9492 alephsdom 9773 brdom7disj 10218 fpwwe2lem12 10329 nn0sub 12213 elznn0 12264 nn01to3 12610 supxrbnd1 12984 supxrbnd2 12985 rexuz3 14988 smueqlem 16125 qnumdenbi 16376 dfiso3 17402 tltnle 18055 lssne0 20127 pjfval2 20826 0top 22041 1stccn 22522 dscopn 23635 bcthlem1 24393 ovolgelb 24549 iblpos 24862 itgposval 24865 itgsubstlem 25117 sincosq3sgn 25562 sincosq4sgn 25563 lgsquadlem3 26435 colinearalg 27181 elntg2 27256 wlklnwwlkln2lem 28148 2pthdlem1 28196 wwlks2onsym 28224 rusgrnumwwlkb0 28237 numclwwlk2lem1 28641 nmoo0 29054 leop3 30388 leoptri 30399 f1od2 30958 fedgmullem2 31613 xpord2pred 33719 dfrdg4 34180 curf 35682 poimirlem28 35732 itgaddnclem2 35763 lfl1dim 37062 glbconxN 37319 2dim 37411 elpadd0 37750 dalawlem13 37824 diclspsn 39135 dihglb2 39283 dochsordN 39315 lzunuz 40506 uneqsn 41522 ntrclskb 41568 ntrneiel2 41585 infxrbnd2 42798 funressnfv 44424 funressndmafv2rn 44602 iccpartiltu 44762 |
Copyright terms: Public domain | W3C validator |