| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bitr2di | Structured version Visualization version GIF version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr2di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bitr2di.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| bitr2di | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2di.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bitr2di.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 3 | 1, 2 | bitrdi 287 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 4 | 3 | bicomd 223 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bitr4id 290 bibif 371 oranabs 1001 necon4bid 2970 2reu4lem 4485 resopab2 6007 xpco 6262 funconstss 7028 xpopth 8009 xpord2pred 8124 snmapen 9009 ac6sfi 9231 supgtoreq 9422 rankr1bg 9756 alephsdom 10039 brdom7disj 10484 fpwwe2lem12 10595 nn0sub 12492 elznn0 12544 nn01to3 12900 supxrbnd1 13281 supxrbnd2 13282 rexuz3 15315 smueqlem 16460 qnumdenbi 16714 dfiso3 17735 tltnle 18381 lssne0 20857 pjfval2 21618 0top 22870 1stccn 23350 dscopn 24461 bcthlem1 25224 ovolgelb 25381 iblpos 25694 itgposval 25697 itgsubstlem 25955 sincosq3sgn 26409 sincosq4sgn 26410 lgsquadlem3 27293 elzs2 28287 colinearalg 28837 elntg2 28912 wlklnwwlkln2lem 29812 2pthdlem1 29860 wwlks2onsym 29888 rusgrnumwwlkb0 29901 numclwwlk2lem1 30305 nmoo0 30720 leop3 32054 leoptri 32065 f1od2 32644 fedgmullem2 33626 vonf1owev 35095 dfrdg4 35939 curf 37592 poimirlem28 37642 itgaddnclem2 37673 relssinxpdmrn 38331 lfl1dim 39114 glbconxN 39372 2dim 39464 elpadd0 39803 dalawlem13 39877 diclspsn 41188 dihglb2 41336 dochsordN 41368 redvmptabs 42348 lzunuz 42756 tfsconcat0b 43335 uneqsn 44014 ntrclskb 44058 ntrneiel2 44075 infxrbnd2 45365 funressnfv 47044 funressndmafv2rn 47224 iccpartiltu 47423 |
| Copyright terms: Public domain | W3C validator |