| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bitr2di | Structured version Visualization version GIF version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr2di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bitr2di.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| bitr2di | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2di.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bitr2di.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 3 | 1, 2 | bitrdi 287 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 4 | 3 | bicomd 223 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bitr4id 290 bibif 371 oranabs 1001 necon4bid 2977 2reu4lem 4497 resopab2 6023 xpco 6278 funconstss 7046 xpopth 8029 xpord2pred 8144 snmapen 9052 ac6sfi 9292 supgtoreq 9483 rankr1bg 9817 alephsdom 10100 brdom7disj 10545 fpwwe2lem12 10656 nn0sub 12551 elznn0 12603 nn01to3 12957 supxrbnd1 13337 supxrbnd2 13338 rexuz3 15367 smueqlem 16509 qnumdenbi 16763 dfiso3 17786 tltnle 18432 lssne0 20908 pjfval2 21669 0top 22921 1stccn 23401 dscopn 24512 bcthlem1 25276 ovolgelb 25433 iblpos 25746 itgposval 25749 itgsubstlem 26007 sincosq3sgn 26461 sincosq4sgn 26462 lgsquadlem3 27345 elzs2 28339 colinearalg 28889 elntg2 28964 wlklnwwlkln2lem 29864 2pthdlem1 29912 wwlks2onsym 29940 rusgrnumwwlkb0 29953 numclwwlk2lem1 30357 nmoo0 30772 leop3 32106 leoptri 32117 f1od2 32698 fedgmullem2 33670 dfrdg4 35969 curf 37622 poimirlem28 37672 itgaddnclem2 37703 relssinxpdmrn 38367 lfl1dim 39139 glbconxN 39397 2dim 39489 elpadd0 39828 dalawlem13 39902 diclspsn 41213 dihglb2 41361 dochsordN 41393 redvmptabs 42403 lzunuz 42791 tfsconcat0b 43370 uneqsn 44049 ntrclskb 44093 ntrneiel2 44110 infxrbnd2 45396 funressnfv 47072 funressndmafv2rn 47252 iccpartiltu 47436 |
| Copyright terms: Public domain | W3C validator |