![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bitr2di | Structured version Visualization version GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr2di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr2di.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
bitr2di | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2di.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bitr2di.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
3 | 1, 2 | bitrdi 286 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
4 | 3 | bicomd 222 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bitr4id 289 bibif 370 oranabs 996 necon4bid 2984 2reu4lem 4524 resopab2 6035 xpco 6287 funconstss 7056 xpopth 8018 xpord2pred 8133 snmapen 9040 ac6sfi 9289 supgtoreq 9467 rankr1bg 9800 alephsdom 10083 brdom7disj 10528 fpwwe2lem12 10639 nn0sub 12526 elznn0 12577 nn01to3 12929 supxrbnd1 13304 supxrbnd2 13305 rexuz3 15299 smueqlem 16435 qnumdenbi 16684 dfiso3 17724 tltnle 18379 lssne0 20705 pjfval2 21483 0top 22706 1stccn 23187 dscopn 24302 bcthlem1 25072 ovolgelb 25229 iblpos 25542 itgposval 25545 itgsubstlem 25800 sincosq3sgn 26246 sincosq4sgn 26247 lgsquadlem3 27121 colinearalg 28435 elntg2 28510 wlklnwwlkln2lem 29403 2pthdlem1 29451 wwlks2onsym 29479 rusgrnumwwlkb0 29492 numclwwlk2lem1 29896 nmoo0 30311 leop3 31645 leoptri 31656 f1od2 32213 fedgmullem2 33003 dfrdg4 35227 curf 36769 poimirlem28 36819 itgaddnclem2 36850 relssinxpdmrn 37521 lfl1dim 38294 glbconxN 38552 2dim 38644 elpadd0 38983 dalawlem13 39057 diclspsn 40368 dihglb2 40516 dochsordN 40548 lzunuz 41808 tfsconcat0b 42398 uneqsn 43078 ntrclskb 43122 ntrneiel2 43139 infxrbnd2 44377 funressnfv 46051 funressndmafv2rn 46229 iccpartiltu 46388 |
Copyright terms: Public domain | W3C validator |