![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bitr2di | Structured version Visualization version GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr2di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr2di.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
bitr2di | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2di.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bitr2di.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
3 | 1, 2 | bitrdi 287 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
4 | 3 | bicomd 222 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bitr4id 290 bibif 371 oranabs 997 necon4bid 2985 2reu4lem 4525 resopab2 6036 xpco 6288 funconstss 7057 xpopth 8020 xpord2pred 8136 snmapen 9044 ac6sfi 9293 supgtoreq 9471 rankr1bg 9804 alephsdom 10087 brdom7disj 10532 fpwwe2lem12 10643 nn0sub 12529 elznn0 12580 nn01to3 12932 supxrbnd1 13307 supxrbnd2 13308 rexuz3 15302 smueqlem 16438 qnumdenbi 16687 dfiso3 17727 tltnle 18385 lssne0 20794 pjfval2 21575 0top 22807 1stccn 23288 dscopn 24403 bcthlem1 25173 ovolgelb 25330 iblpos 25643 itgposval 25646 itgsubstlem 25904 sincosq3sgn 26351 sincosq4sgn 26352 lgsquadlem3 27230 colinearalg 28603 elntg2 28678 wlklnwwlkln2lem 29571 2pthdlem1 29619 wwlks2onsym 29647 rusgrnumwwlkb0 29660 numclwwlk2lem1 30064 nmoo0 30479 leop3 31813 leoptri 31824 f1od2 32381 fedgmullem2 33171 dfrdg4 35395 curf 36933 poimirlem28 36983 itgaddnclem2 37014 relssinxpdmrn 37685 lfl1dim 38458 glbconxN 38716 2dim 38808 elpadd0 39147 dalawlem13 39221 diclspsn 40532 dihglb2 40680 dochsordN 40712 lzunuz 41972 tfsconcat0b 42562 uneqsn 43242 ntrclskb 43286 ntrneiel2 43303 infxrbnd2 44541 funressnfv 46215 funressndmafv2rn 46393 iccpartiltu 46552 |
Copyright terms: Public domain | W3C validator |