![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bitr2di | Structured version Visualization version GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr2di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr2di.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
bitr2di | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2di.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bitr2di.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
3 | 1, 2 | bitrdi 287 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
4 | 3 | bicomd 222 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bitr4id 290 bibif 371 oranabs 997 necon4bid 2985 2reu4lem 4525 resopab2 6036 xpco 6288 funconstss 7057 xpopth 8019 xpord2pred 8134 snmapen 9041 ac6sfi 9290 supgtoreq 9468 rankr1bg 9801 alephsdom 10084 brdom7disj 10529 fpwwe2lem12 10640 nn0sub 12527 elznn0 12578 nn01to3 12930 supxrbnd1 13305 supxrbnd2 13306 rexuz3 15300 smueqlem 16436 qnumdenbi 16685 dfiso3 17725 tltnle 18380 lssne0 20706 pjfval2 21484 0top 22707 1stccn 23188 dscopn 24303 bcthlem1 25073 ovolgelb 25230 iblpos 25543 itgposval 25546 itgsubstlem 25801 sincosq3sgn 26247 sincosq4sgn 26248 lgsquadlem3 27122 colinearalg 28436 elntg2 28511 wlklnwwlkln2lem 29404 2pthdlem1 29452 wwlks2onsym 29480 rusgrnumwwlkb0 29493 numclwwlk2lem1 29897 nmoo0 30312 leop3 31646 leoptri 31657 f1od2 32214 fedgmullem2 33004 dfrdg4 35228 curf 36770 poimirlem28 36820 itgaddnclem2 36851 relssinxpdmrn 37522 lfl1dim 38295 glbconxN 38553 2dim 38645 elpadd0 38984 dalawlem13 39058 diclspsn 40369 dihglb2 40517 dochsordN 40549 lzunuz 41809 tfsconcat0b 42399 uneqsn 43079 ntrclskb 43123 ntrneiel2 43140 infxrbnd2 44378 funressnfv 46052 funressndmafv2rn 46230 iccpartiltu 46389 |
Copyright terms: Public domain | W3C validator |