![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bitr2di | Structured version Visualization version GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr2di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr2di.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
bitr2di | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2di.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bitr2di.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
3 | 1, 2 | bitrdi 287 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
4 | 3 | bicomd 223 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: bitr4id 290 bibif 371 oranabs 1001 necon4bid 2983 2reu4lem 4527 resopab2 6055 xpco 6310 funconstss 7075 xpopth 8053 xpord2pred 8168 snmapen 9076 ac6sfi 9317 supgtoreq 9507 rankr1bg 9840 alephsdom 10123 brdom7disj 10568 fpwwe2lem12 10679 nn0sub 12573 elznn0 12625 nn01to3 12980 supxrbnd1 13359 supxrbnd2 13360 rexuz3 15383 smueqlem 16523 qnumdenbi 16777 dfiso3 17820 tltnle 18479 lssne0 20966 pjfval2 21746 0top 23005 1stccn 23486 dscopn 24601 bcthlem1 25371 ovolgelb 25528 iblpos 25842 itgposval 25845 itgsubstlem 26103 sincosq3sgn 26556 sincosq4sgn 26557 lgsquadlem3 27440 elzs2 28399 colinearalg 28939 elntg2 29014 wlklnwwlkln2lem 29911 2pthdlem1 29959 wwlks2onsym 29987 rusgrnumwwlkb0 30000 numclwwlk2lem1 30404 nmoo0 30819 leop3 32153 leoptri 32164 f1od2 32738 fedgmullem2 33657 dfrdg4 35932 curf 37584 poimirlem28 37634 itgaddnclem2 37665 relssinxpdmrn 38330 lfl1dim 39102 glbconxN 39360 2dim 39452 elpadd0 39791 dalawlem13 39865 diclspsn 41176 dihglb2 41324 dochsordN 41356 redvmptabs 42368 lzunuz 42755 tfsconcat0b 43335 uneqsn 44014 ntrclskb 44058 ntrneiel2 44075 infxrbnd2 45318 funressnfv 46992 funressndmafv2rn 47172 iccpartiltu 47346 |
Copyright terms: Public domain | W3C validator |