MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  biortn Structured version   Visualization version   GIF version

Theorem biortn 938
Description: A wff is equivalent to its negated disjunction with falsehood. (Contributed by NM, 9-Jul-2012.)
Assertion
Ref Expression
biortn (𝜑 → (𝜓 ↔ (¬ 𝜑𝜓)))

Proof of Theorem biortn
StepHypRef Expression
1 notnot 142 . 2 (𝜑 → ¬ ¬ 𝜑)
2 biorf 937 . 2 (¬ ¬ 𝜑 → (𝜓 ↔ (¬ 𝜑𝜓)))
31, 2syl 17 1 (𝜑 → (𝜓 ↔ (¬ 𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 849
This theorem is referenced by:  oranabs  1002  xrdifh  32782  ballotlemfc0  34495  ballotlemfcc  34496  topdifinfindis  37347  topdifinffinlem  37348  4atlem3a  39599  4atlem3b  39600  ntrneineine1lem  44097
  Copyright terms: Public domain W3C validator