| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biortn | Structured version Visualization version GIF version | ||
| Description: A wff is equivalent to its negated disjunction with falsehood. (Contributed by NM, 9-Jul-2012.) |
| Ref | Expression |
|---|---|
| biortn | ⊢ (𝜑 → (𝜓 ↔ (¬ 𝜑 ∨ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnot 142 | . 2 ⊢ (𝜑 → ¬ ¬ 𝜑) | |
| 2 | biorf 937 | . 2 ⊢ (¬ ¬ 𝜑 → (𝜓 ↔ (¬ 𝜑 ∨ 𝜓))) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜓 ↔ (¬ 𝜑 ∨ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 849 |
| This theorem is referenced by: oranabs 1002 xrdifh 32782 ballotlemfc0 34495 ballotlemfcc 34496 topdifinfindis 37347 topdifinffinlem 37348 4atlem3a 39599 4atlem3b 39600 ntrneineine1lem 44097 |
| Copyright terms: Public domain | W3C validator |