Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biortn | Structured version Visualization version GIF version |
Description: A wff is equivalent to its negated disjunction with falsehood. (Contributed by NM, 9-Jul-2012.) |
Ref | Expression |
---|---|
biortn | ⊢ (𝜑 → (𝜓 ↔ (¬ 𝜑 ∨ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 142 | . 2 ⊢ (𝜑 → ¬ ¬ 𝜑) | |
2 | biorf 934 | . 2 ⊢ (¬ ¬ 𝜑 → (𝜓 ↔ (¬ 𝜑 ∨ 𝜓))) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜓 ↔ (¬ 𝜑 ∨ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 845 |
This theorem is referenced by: oranabs 997 xrdifh 31101 ballotlemfc0 32459 ballotlemfcc 32460 topdifinfindis 35517 topdifinffinlem 35518 4atlem3a 37611 4atlem3b 37612 ntrneineine1lem 41694 |
Copyright terms: Public domain | W3C validator |