MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm1.5 Structured version   Visualization version   GIF version

Theorem pm1.5 917
Description: Axiom *1.5 (Assoc) of [WhiteheadRussell] p. 96. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm1.5 ((𝜑 ∨ (𝜓𝜒)) → (𝜓 ∨ (𝜑𝜒)))

Proof of Theorem pm1.5
StepHypRef Expression
1 orc 864 . . 3 (𝜑 → (𝜑𝜒))
21olcd 871 . 2 (𝜑 → (𝜓 ∨ (𝜑𝜒)))
3 olc 865 . . 3 (𝜒 → (𝜑𝜒))
43orim2i 908 . 2 ((𝜓𝜒) → (𝜓 ∨ (𝜑𝜒)))
52, 4jaoi 854 1 ((𝜑 ∨ (𝜓𝜒)) → (𝜓 ∨ (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 845
This theorem is referenced by:  or12  918  meran1  34588  meran3  34590
  Copyright terms: Public domain W3C validator