|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > pm1.5 | Structured version Visualization version GIF version | ||
| Description: Axiom *1.5 (Assoc) of [WhiteheadRussell] p. 96. (Contributed by NM, 3-Jan-2005.) | 
| Ref | Expression | 
|---|---|
| pm1.5 | ⊢ ((𝜑 ∨ (𝜓 ∨ 𝜒)) → (𝜓 ∨ (𝜑 ∨ 𝜒))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | orc 867 | . . 3 ⊢ (𝜑 → (𝜑 ∨ 𝜒)) | |
| 2 | 1 | olcd 874 | . 2 ⊢ (𝜑 → (𝜓 ∨ (𝜑 ∨ 𝜒))) | 
| 3 | olc 868 | . . 3 ⊢ (𝜒 → (𝜑 ∨ 𝜒)) | |
| 4 | 3 | orim2i 910 | . 2 ⊢ ((𝜓 ∨ 𝜒) → (𝜓 ∨ (𝜑 ∨ 𝜒))) | 
| 5 | 2, 4 | jaoi 857 | 1 ⊢ ((𝜑 ∨ (𝜓 ∨ 𝜒)) → (𝜓 ∨ (𝜑 ∨ 𝜒))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∨ wo 847 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-or 848 | 
| This theorem is referenced by: or12 920 meran1 36413 meran3 36415 | 
| Copyright terms: Public domain | W3C validator |