MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  or12 Structured version   Visualization version   GIF version

Theorem or12 949
Description: Swap two disjuncts. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 14-Nov-2012.)
Assertion
Ref Expression
or12 ((𝜑 ∨ (𝜓𝜒)) ↔ (𝜓 ∨ (𝜑𝜒)))

Proof of Theorem or12
StepHypRef Expression
1 pm1.5 948 . 2 ((𝜑 ∨ (𝜓𝜒)) → (𝜓 ∨ (𝜑𝜒)))
2 pm1.5 948 . 2 ((𝜓 ∨ (𝜑𝜒)) → (𝜑 ∨ (𝜓𝜒)))
31, 2impbii 201 1 ((𝜑 ∨ (𝜓𝜒)) ↔ (𝜓 ∨ (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wo 878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-or 879
This theorem is referenced by:  orass  950  or32  954  or4  955  3orcoma  1117  sotrieq  5293  ordzsl  7311  plydivex  24458  nosepon  32352
  Copyright terms: Public domain W3C validator