| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > or12 | Structured version Visualization version GIF version | ||
| Description: Swap two disjuncts. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 14-Nov-2012.) |
| Ref | Expression |
|---|---|
| or12 | ⊢ ((𝜑 ∨ (𝜓 ∨ 𝜒)) ↔ (𝜓 ∨ (𝜑 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm1.5 919 | . 2 ⊢ ((𝜑 ∨ (𝜓 ∨ 𝜒)) → (𝜓 ∨ (𝜑 ∨ 𝜒))) | |
| 2 | pm1.5 919 | . 2 ⊢ ((𝜓 ∨ (𝜑 ∨ 𝜒)) → (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ ((𝜑 ∨ (𝜓 ∨ 𝜒)) ↔ (𝜓 ∨ (𝜑 ∨ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orass 921 or32 925 or4 926 3orcoma 1092 sotrieq 5592 ordzsl 7840 plydivex 26257 nosepon 27629 |
| Copyright terms: Public domain | W3C validator |