Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm10.56 Structured version   Visualization version   GIF version

Theorem pm10.56 40586
Description: Theorem *10.56 in [WhiteheadRussell] p. 156. (Contributed by Andrew Salmon, 24-May-2011.)
Assertion
Ref Expression
pm10.56 ((∀𝑥(𝜑𝜓) ∧ ∃𝑥(𝜑𝜒)) → ∃𝑥(𝜓𝜒))

Proof of Theorem pm10.56
StepHypRef Expression
1 pm3.45 621 . . 3 ((𝜑𝜓) → ((𝜑𝜒) → (𝜓𝜒)))
21aleximi 1825 . 2 (∀𝑥(𝜑𝜓) → (∃𝑥(𝜑𝜒) → ∃𝑥(𝜓𝜒)))
32imp 407 1 ((∀𝑥(𝜑𝜓) ∧ ∃𝑥(𝜑𝜒)) → ∃𝑥(𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1528  wex 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803
This theorem depends on definitions:  df-bi 208  df-an 397  df-ex 1774
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator