MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.45 Structured version   Visualization version   GIF version

Theorem pm3.45 622
Description: Theorem *3.45 (Fact) of [WhiteheadRussell] p. 113. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm3.45 ((𝜑𝜓) → ((𝜑𝜒) → (𝜓𝜒)))

Proof of Theorem pm3.45
StepHypRef Expression
1 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
21anim1d 611 1 ((𝜑𝜓) → ((𝜑𝜒) → (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  mopick  2618  ssrmof  4014  ssrexv  4016  rabss2  4041  lmcnp  23191  fbflim2  23864  ivthlem2  25353  ivthlem3  25354  arg-ax  36404  pm10.56  44359
  Copyright terms: Public domain W3C validator