| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm3.45 | Structured version Visualization version GIF version | ||
| Description: Theorem *3.45 (Fact) of [WhiteheadRussell] p. 113. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm3.45 | ⊢ ((𝜑 → 𝜓) → ((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
| 2 | 1 | anim1d 611 | 1 ⊢ ((𝜑 → 𝜓) → ((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mopick 2625 ssrmof 4051 ssrexv 4053 rabss2 4078 lmcnp 23312 fbflim2 23985 ivthlem2 25487 ivthlem3 25488 arg-ax 36417 pm10.56 44389 |
| Copyright terms: Public domain | W3C validator |