Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm11.53v Structured version   Visualization version   GIF version

Theorem pm11.53v 1945
 Description: Version of pm11.53 2356 with a disjoint variable condition, requiring fewer axioms. (Contributed by BJ, 7-Mar-2020.)
Assertion
Ref Expression
pm11.53v (∀𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓))
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem pm11.53v
StepHypRef Expression
1 19.21v 1940 . . 3 (∀𝑦(𝜑𝜓) ↔ (𝜑 → ∀𝑦𝜓))
21albii 1821 . 2 (∀𝑥𝑦(𝜑𝜓) ↔ ∀𝑥(𝜑 → ∀𝑦𝜓))
3 19.23v 1943 . 2 (∀𝑥(𝜑 → ∀𝑦𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓))
42, 3bitri 278 1 (∀𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209  ∀wal 1536  ∃wex 1781 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911 This theorem depends on definitions:  df-bi 210  df-ex 1782 This theorem is referenced by:  sbnf2  2366
 Copyright terms: Public domain W3C validator