MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm11.53 Structured version   Visualization version   GIF version

Theorem pm11.53 2278
Description: Theorem *11.53 in [WhiteheadRussell] p. 164. See pm11.53v 1903 for a version requiring fewer axioms. (Contributed by Andrew Salmon, 24-May-2011.)
Assertion
Ref Expression
pm11.53 (∀𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓))
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem pm11.53
StepHypRef Expression
1 19.21v 1898 . . 3 (∀𝑦(𝜑𝜓) ↔ (𝜑 → ∀𝑦𝜓))
21albii 1782 . 2 (∀𝑥𝑦(𝜑𝜓) ↔ ∀𝑥(𝜑 → ∀𝑦𝜓))
3 nfv 1873 . . . 4 𝑥𝜓
43nfal 2261 . . 3 𝑥𝑦𝜓
5419.23 2139 . 2 (∀𝑥(𝜑 → ∀𝑦𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓))
62, 5bitri 267 1 (∀𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wal 1505  wex 1742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-10 2077  ax-11 2091  ax-12 2104
This theorem depends on definitions:  df-bi 199  df-ex 1743  df-nf 1747
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator