Proof of Theorem sbnf2
| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑦𝜑 |
| 2 | 1 | sb8ef 2358 |
. . . . 5
⊢
(∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) |
| 3 | | sb8v 2355 |
. . . . 5
⊢
(∀𝑥𝜑 ↔ ∀𝑧[𝑧 / 𝑥]𝜑) |
| 4 | 2, 3 | imbi12i 350 |
. . . 4
⊢
((∃𝑥𝜑 → ∀𝑥𝜑) ↔ (∃𝑦[𝑦 / 𝑥]𝜑 → ∀𝑧[𝑧 / 𝑥]𝜑)) |
| 5 | | df-nf 1784 |
. . . 4
⊢
(Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) |
| 6 | | pm11.53v 1944 |
. . . 4
⊢
(∀𝑦∀𝑧([𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑) ↔ (∃𝑦[𝑦 / 𝑥]𝜑 → ∀𝑧[𝑧 / 𝑥]𝜑)) |
| 7 | 4, 5, 6 | 3bitr4i 303 |
. . 3
⊢
(Ⅎ𝑥𝜑 ↔ ∀𝑦∀𝑧([𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑)) |
| 8 | | nfv 1914 |
. . . . . . 7
⊢
Ⅎ𝑧𝜑 |
| 9 | 8 | sb8ef 2358 |
. . . . . 6
⊢
(∃𝑥𝜑 ↔ ∃𝑧[𝑧 / 𝑥]𝜑) |
| 10 | | sb8v 2355 |
. . . . . 6
⊢
(∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
| 11 | 9, 10 | imbi12i 350 |
. . . . 5
⊢
((∃𝑥𝜑 → ∀𝑥𝜑) ↔ (∃𝑧[𝑧 / 𝑥]𝜑 → ∀𝑦[𝑦 / 𝑥]𝜑)) |
| 12 | | pm11.53v 1944 |
. . . . 5
⊢
(∀𝑧∀𝑦([𝑧 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑) ↔ (∃𝑧[𝑧 / 𝑥]𝜑 → ∀𝑦[𝑦 / 𝑥]𝜑)) |
| 13 | 11, 5, 12 | 3bitr4i 303 |
. . . 4
⊢
(Ⅎ𝑥𝜑 ↔ ∀𝑧∀𝑦([𝑧 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑)) |
| 14 | | alcom 2159 |
. . . 4
⊢
(∀𝑧∀𝑦([𝑧 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑) ↔ ∀𝑦∀𝑧([𝑧 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑)) |
| 15 | 13, 14 | bitri 275 |
. . 3
⊢
(Ⅎ𝑥𝜑 ↔ ∀𝑦∀𝑧([𝑧 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑)) |
| 16 | 7, 15 | anbi12i 628 |
. 2
⊢
((Ⅎ𝑥𝜑 ∧ Ⅎ𝑥𝜑) ↔ (∀𝑦∀𝑧([𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑) ∧ ∀𝑦∀𝑧([𝑧 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑))) |
| 17 | | pm4.24 563 |
. 2
⊢
(Ⅎ𝑥𝜑 ↔ (Ⅎ𝑥𝜑 ∧ Ⅎ𝑥𝜑)) |
| 18 | | 2albiim 1890 |
. 2
⊢
(∀𝑦∀𝑧([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) ↔ (∀𝑦∀𝑧([𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑) ∧ ∀𝑦∀𝑧([𝑧 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑))) |
| 19 | 16, 17, 18 | 3bitr4i 303 |
1
⊢
(Ⅎ𝑥𝜑 ↔ ∀𝑦∀𝑧([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)) |