Proof of Theorem sbnf2
Step | Hyp | Ref
| Expression |
1 | | nfv 1917 |
. . . . . 6
⊢
Ⅎ𝑦𝜑 |
2 | 1 | sb8ef 2353 |
. . . . 5
⊢
(∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) |
3 | | sb8v 2350 |
. . . . 5
⊢
(∀𝑥𝜑 ↔ ∀𝑧[𝑧 / 𝑥]𝜑) |
4 | 2, 3 | imbi12i 351 |
. . . 4
⊢
((∃𝑥𝜑 → ∀𝑥𝜑) ↔ (∃𝑦[𝑦 / 𝑥]𝜑 → ∀𝑧[𝑧 / 𝑥]𝜑)) |
5 | | df-nf 1787 |
. . . 4
⊢
(Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) |
6 | | pm11.53v 1947 |
. . . 4
⊢
(∀𝑦∀𝑧([𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑) ↔ (∃𝑦[𝑦 / 𝑥]𝜑 → ∀𝑧[𝑧 / 𝑥]𝜑)) |
7 | 4, 5, 6 | 3bitr4i 303 |
. . 3
⊢
(Ⅎ𝑥𝜑 ↔ ∀𝑦∀𝑧([𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑)) |
8 | | nfv 1917 |
. . . . . . 7
⊢
Ⅎ𝑧𝜑 |
9 | 8 | sb8ef 2353 |
. . . . . 6
⊢
(∃𝑥𝜑 ↔ ∃𝑧[𝑧 / 𝑥]𝜑) |
10 | | sb8v 2350 |
. . . . . 6
⊢
(∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
11 | 9, 10 | imbi12i 351 |
. . . . 5
⊢
((∃𝑥𝜑 → ∀𝑥𝜑) ↔ (∃𝑧[𝑧 / 𝑥]𝜑 → ∀𝑦[𝑦 / 𝑥]𝜑)) |
12 | | pm11.53v 1947 |
. . . . 5
⊢
(∀𝑧∀𝑦([𝑧 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑) ↔ (∃𝑧[𝑧 / 𝑥]𝜑 → ∀𝑦[𝑦 / 𝑥]𝜑)) |
13 | 11, 5, 12 | 3bitr4i 303 |
. . . 4
⊢
(Ⅎ𝑥𝜑 ↔ ∀𝑧∀𝑦([𝑧 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑)) |
14 | | alcom 2156 |
. . . 4
⊢
(∀𝑧∀𝑦([𝑧 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑) ↔ ∀𝑦∀𝑧([𝑧 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑)) |
15 | 13, 14 | bitri 274 |
. . 3
⊢
(Ⅎ𝑥𝜑 ↔ ∀𝑦∀𝑧([𝑧 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑)) |
16 | 7, 15 | anbi12i 627 |
. 2
⊢
((Ⅎ𝑥𝜑 ∧ Ⅎ𝑥𝜑) ↔ (∀𝑦∀𝑧([𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑) ∧ ∀𝑦∀𝑧([𝑧 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑))) |
17 | | pm4.24 564 |
. 2
⊢
(Ⅎ𝑥𝜑 ↔ (Ⅎ𝑥𝜑 ∧ Ⅎ𝑥𝜑)) |
18 | | 2albiim 1893 |
. 2
⊢
(∀𝑦∀𝑧([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) ↔ (∀𝑦∀𝑧([𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑) ∧ ∀𝑦∀𝑧([𝑧 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑))) |
19 | 16, 17, 18 | 3bitr4i 303 |
1
⊢
(Ⅎ𝑥𝜑 ↔ ∀𝑦∀𝑧([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)) |