MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.23vv Structured version   Visualization version   GIF version

Theorem 19.23vv 1947
Description: Theorem 19.23v 1946 extended to two variables. (Contributed by NM, 10-Aug-2004.)
Assertion
Ref Expression
19.23vv (∀𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝑦𝜑𝜓))
Distinct variable groups:   𝜓,𝑥   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem 19.23vv
StepHypRef Expression
1 19.23v 1946 . . 3 (∀𝑦(𝜑𝜓) ↔ (∃𝑦𝜑𝜓))
21albii 1823 . 2 (∀𝑥𝑦(𝜑𝜓) ↔ ∀𝑥(∃𝑦𝜑𝜓))
3 19.23v 1946 . 2 (∀𝑥(∃𝑦𝜑𝜓) ↔ (∃𝑥𝑦𝜑𝜓))
42, 3bitri 274 1 (∀𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝑦𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914
This theorem depends on definitions:  df-bi 206  df-ex 1784
This theorem is referenced by:  ssrel  5683  ssrelrel  5695  raliunxp  5737  bnj1052  32855  bnj1030  32867
  Copyright terms: Public domain W3C validator