Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.23vv | Structured version Visualization version GIF version |
Description: Theorem 19.23v 1945 extended to two variables. (Contributed by NM, 10-Aug-2004.) |
Ref | Expression |
---|---|
19.23vv | ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ (∃𝑥∃𝑦𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.23v 1945 | . . 3 ⊢ (∀𝑦(𝜑 → 𝜓) ↔ (∃𝑦𝜑 → 𝜓)) | |
2 | 1 | albii 1822 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ ∀𝑥(∃𝑦𝜑 → 𝜓)) |
3 | 19.23v 1945 | . 2 ⊢ (∀𝑥(∃𝑦𝜑 → 𝜓) ↔ (∃𝑥∃𝑦𝜑 → 𝜓)) | |
4 | 2, 3 | bitri 274 | 1 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ (∃𝑥∃𝑦𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: ssrel 5693 ssrelOLD 5694 ssrelrel 5706 raliunxp 5748 bnj1052 32955 bnj1030 32967 |
Copyright terms: Public domain | W3C validator |