| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.23vv | Structured version Visualization version GIF version | ||
| Description: Theorem 19.23v 1942 extended to two variables. (Contributed by NM, 10-Aug-2004.) |
| Ref | Expression |
|---|---|
| 19.23vv | ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ (∃𝑥∃𝑦𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.23v 1942 | . . 3 ⊢ (∀𝑦(𝜑 → 𝜓) ↔ (∃𝑦𝜑 → 𝜓)) | |
| 2 | 1 | albii 1819 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ ∀𝑥(∃𝑦𝜑 → 𝜓)) |
| 3 | 19.23v 1942 | . 2 ⊢ (∀𝑥(∃𝑦𝜑 → 𝜓) ↔ (∃𝑥∃𝑦𝜑 → 𝜓)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ (∃𝑥∃𝑦𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: ssrel 5747 ssrelOLD 5748 ssrelrel 5761 raliunxp 5805 bnj1052 34971 bnj1030 34983 |
| Copyright terms: Public domain | W3C validator |