MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.23vv Structured version   Visualization version   GIF version

Theorem 19.23vv 1942
Description: Theorem 19.23v 1941 extended to two variables. (Contributed by NM, 10-Aug-2004.)
Assertion
Ref Expression
19.23vv (∀𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝑦𝜑𝜓))
Distinct variable groups:   𝜓,𝑥   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem 19.23vv
StepHypRef Expression
1 19.23v 1941 . . 3 (∀𝑦(𝜑𝜓) ↔ (∃𝑦𝜑𝜓))
21albii 1817 . 2 (∀𝑥𝑦(𝜑𝜓) ↔ ∀𝑥(∃𝑦𝜑𝜓))
3 19.23v 1941 . 2 (∀𝑥(∃𝑦𝜑𝜓) ↔ (∃𝑥𝑦𝜑𝜓))
42, 3bitri 275 1 (∀𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝑦𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909
This theorem depends on definitions:  df-bi 207  df-ex 1778
This theorem is referenced by:  ssrel  5806  ssrelOLD  5807  ssrelrel  5820  raliunxp  5864  bnj1052  34951  bnj1030  34963
  Copyright terms: Public domain W3C validator