MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.23vv Structured version   Visualization version   GIF version

Theorem 19.23vv 1938
Description: Theorem 19.23v 1937 extended to two variables. (Contributed by NM, 10-Aug-2004.)
Assertion
Ref Expression
19.23vv (∀𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝑦𝜑𝜓))
Distinct variable groups:   𝜓,𝑥   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem 19.23vv
StepHypRef Expression
1 19.23v 1937 . . 3 (∀𝑦(𝜑𝜓) ↔ (∃𝑦𝜑𝜓))
21albii 1813 . 2 (∀𝑥𝑦(𝜑𝜓) ↔ ∀𝑥(∃𝑦𝜑𝜓))
3 19.23v 1937 . 2 (∀𝑥(∃𝑦𝜑𝜓) ↔ (∃𝑥𝑦𝜑𝜓))
42, 3bitri 275 1 (∀𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝑦𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1531  wex 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905
This theorem depends on definitions:  df-bi 206  df-ex 1774
This theorem is referenced by:  ssrel  5775  ssrelOLD  5776  ssrelrel  5789  raliunxp  5832  bnj1052  34514  bnj1030  34526
  Copyright terms: Public domain W3C validator