Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm13.13a Structured version   Visualization version   GIF version

Theorem pm13.13a 43909
Description: One result of theorem *13.13 in [WhiteheadRussell] p. 178. A note on the section - to make the theorems more usable, and because inequality is notation for set theory (it is not defined in the predicate calculus section), this section will use classes instead of sets. (Contributed by Andrew Salmon, 3-Jun-2011.)
Assertion
Ref Expression
pm13.13a ((𝜑𝑥 = 𝐴) → [𝐴 / 𝑥]𝜑)

Proof of Theorem pm13.13a
StepHypRef Expression
1 sbceq1a 3785 . 2 (𝑥 = 𝐴 → (𝜑[𝐴 / 𝑥]𝜑))
21biimpac 477 1 ((𝜑𝑥 = 𝐴) → [𝐴 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  [wsbc 3774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-12 2166  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-sbc 3775
This theorem is referenced by:  pm13.194  43914
  Copyright terms: Public domain W3C validator