![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pm13.13a | Structured version Visualization version GIF version |
Description: One result of theorem *13.13 in [WhiteheadRussell] p. 178. A note on the section - to make the theorems more usable, and because inequality is notation for set theory (it is not defined in the predicate calculus section), this section will use classes instead of sets. (Contributed by Andrew Salmon, 3-Jun-2011.) |
Ref | Expression |
---|---|
pm13.13a | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → [𝐴 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbceq1a 3663 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
2 | 1 | biimpac 472 | 1 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → [𝐴 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 [wsbc 3652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-12 2163 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-ex 1824 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-sbc 3653 |
This theorem is referenced by: pm13.194 39578 |
Copyright terms: Public domain | W3C validator |