![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pm13.13a | Structured version Visualization version GIF version |
Description: One result of theorem *13.13 in [WhiteheadRussell] p. 178. A note on the section - to make the theorems more usable, and because inequality is notation for set theory (it is not defined in the predicate calculus section), this section will use classes instead of sets. (Contributed by Andrew Salmon, 3-Jun-2011.) |
Ref | Expression |
---|---|
pm13.13a | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → [𝐴 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbceq1a 3787 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
2 | 1 | biimpac 477 | 1 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → [𝐴 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 [wsbc 3776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-12 2169 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-sbc 3777 |
This theorem is referenced by: pm13.194 43473 |
Copyright terms: Public domain | W3C validator |