Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm13.13a Structured version   Visualization version   GIF version

Theorem pm13.13a 42025
Description: One result of theorem *13.13 in [WhiteheadRussell] p. 178. A note on the section - to make the theorems more usable, and because inequality is notation for set theory (it is not defined in the predicate calculus section), this section will use classes instead of sets. (Contributed by Andrew Salmon, 3-Jun-2011.)
Assertion
Ref Expression
pm13.13a ((𝜑𝑥 = 𝐴) → [𝐴 / 𝑥]𝜑)

Proof of Theorem pm13.13a
StepHypRef Expression
1 sbceq1a 3727 . 2 (𝑥 = 𝐴 → (𝜑[𝐴 / 𝑥]𝜑))
21biimpac 479 1 ((𝜑𝑥 = 𝐴) → [𝐴 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  [wsbc 3716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-sbc 3717
This theorem is referenced by:  pm13.194  42030
  Copyright terms: Public domain W3C validator