Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biimpac | Structured version Visualization version GIF version |
Description: Importation inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
biimpa.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
biimpac | ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpa.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | biimpcd 248 | . 2 ⊢ (𝜓 → (𝜑 → 𝜒)) |
3 | 2 | imp 406 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
Copyright terms: Public domain | W3C validator |